Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T01:57:54.921Z Has data issue: false hasContentIssue false

Response of Advanced Cowpea (Vigna unguiculata) Breeding Lines to Halosulfuron-Methyl

Published online by Cambridge University Press:  20 January 2017

L. Brandenberger*
Affiliation:
Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078-6027
N. Burgos
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
M. Payton
Affiliation:
Department of Statistics, Oklahoma State University, 301 Math Science Building, Stillwater, OK 74078-1056
T. Morelock
Affiliation:
Department of Horticulture, University of Arkansas, Fayetteville, AR 72701
D. Motes
Affiliation:
University of Arkansas Vegetable Substation, Kibler, AR 72921
S. Eaton
Affiliation:
University of Arkansas Vegetable Substation, Kibler, AR 72921
L. Martin
Affiliation:
University of Arkansas Vegetable Substation, Kibler, AR 72921
L. Carrier
Affiliation:
Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078-6027
*
Corresponding author's E-mail: lynn.brandenberger@okstate.edu.

Abstract

Studies were conducted in Oklahoma and Arkansas to evaluate the tolerance of nine advanced cowpea breeding lines and one cultivar treated PRE with halosulfuron at 1× (0.054 kg ha−1) and 2× (0.107 kg ha−1) rates. The breeding lines, developed by the University of Arkansas, included 01-103, 01-111, 01-117, 01-140, 01-174, 01-180, 01-181, 01-184, and 01-198. ‘Early Scarlet’ was also included as the standard commercial cultivar. Halosulfuron did not reduce the emergence of the breeding lines and Early Scarlet in Oklahoma, but reduced cowpea emergence 14% at the 2× rate in Arkansas. All breeding lines and Early Scarlet had similar emergence capacity in both locations. Higher injury (crop stunting, up to 59% at the 2× rate) and reduction in flowering (up to 83% points at the 1× rate) were observed in Arkansas, but not in Oklahoma. Averaged over herbicide rate, yield was higher and did not differ among cultivars in Arkansas (0.89 to 1.18 Mg ha−1) versus Oklahoma (0.36 to 0.82 Mg ha−1). The highest yield in Oklahoma was obtained from 01-174, 01-103, and 01-117. Despite the observed phytotoxicity symptoms, halosulfuron did not reduce cowpea yield. Halosulfuron is safe to use with these breeding lines and cultivar, at the 0.054 kg ha−1 rate, but may delay cowpea maturity almost 1 wk in soils of close to neutral pH or higher.

Se realizaron estudios en Oklahoma y Arkansas para evaluar la tolerancia de nueve líneas avanzadas de mejoramiento genético de frijol Castilla y de un cultivar tratados en pre emergencia con halosulfuron a dosis de 1X (0.054 kg/ha) y 2X (0.107 kg/ha). Las líneas de mejoramiento, desarrolladas por la Universidad of Arkansas, incluyeron 01-103, 01-111, 01-117, 01-140, 01-174, 01-180, 01-181, 01-184y 01-198. También se incluyó ‘Early Scarlet’ como el cultivar comercial estándar. El halosulfuron no redujo la emergencia de las líneas de mejoramiento ni de ‘Early Scarlet’ en Oklahoma, pero redujo la emergencia del frijol Castilla en 14% a la dosis de 2X en Arkansas. Todas las líneas de mejoramiento y ‘Early Scarlet’ mostraron capacidad similar de emergencia en ambos sitios. Se observó mayor daño (retraso en el crecimiento, hasta 59% a la dosis 2X) y reducción en la floración (hasta 83% a la dosis 1X) en Arkansas pero no en Oklahoma. Promediando entre las dosis de herbicida, el rendimiento fue mayor y no hubo diferencia entre cultivares en Arkansas (0.89–1.18 Mg/ha) en contraste con Oklahoma (0.36–0.82 Mg/ha). El rendimiento más alto en Oklahoma fue obtenido en las líneas 01-174, 01-103 y 01-115. A pesar de los síntomas de fitotoxicidad observados, el halosulfuron no redujo el rendimiento del frijol Castilla. El halosulfuron es seguro para usarse con estas líneas de mejoramiento y el cultivar a la dosis 0.054 kg/ha, pero puede retrasar casi una semana la maduración de esta leguminosa en suelos de pH casi neutral o mayor.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baerg, R. and Barrett, M. 1996. The basis of imazethapyr tolerance in cowpea (Vigna sinensis). Weed Sci. 44:769775.CrossRefGoogle Scholar
Brandenberger, L. P., Shrefler, J. W., Webber, C. L. III., Talbert, R. E., Payton, M. E., Wells, L. K., and McClelland, M. R. 2007. Injury potential from carryover of watermelon herbicide residues. Weed Technol. 21:473476.CrossRefGoogle Scholar
Brandenberger, L. P., Talbert, R. E., Wiedenfeld, R. P., Shrefler, J. W., Webber, C. L. III, and Malik, S. 2005. Effects of halosulfuron on weed control in commercial honeydew crops. Weed Technol. 19:346350.CrossRefGoogle Scholar
Burgos, N. R., Brandenberger, L. P., Stiers, E. N., Shivrain, V. K., Motes, D. R., Wells, L., Eaton, S., Martin, L. W., and Morelock, T. E. 2007. Tolerance of selected advanced cowpea (Vigna unguiculata) breeding lines to fomesafen. Weed Technol. 21:863868.CrossRefGoogle Scholar
Burgos, N. R., Kuk, Y. I., and Talbert, R. E. 2001. Amaranthus palmeri resistance and differential tolerance of Amaranthus palmeri and Amaranthus hybridus to ALS-inhibitor herbicides. Pest Manag. Sci. 57:449457.CrossRefGoogle ScholarPubMed
Carpenter, A. C., Senseman, S. A., and Cralle, H. T. 1999. Adsorption-desorption of halosulfuron on selected Texas soils. Proc. Southern Weed Sci. Soc. 52:211.Google Scholar
Dermiyati, S. K. and Yamamoto, I. 1997. Relationships between soil properties and sorption behavior of the herbicide halosulfuron-methyl in selected Japanese soils. J. Pestic. Sci. 22:288292.Google Scholar
Ehlers, J. D. and Hall, A. E. 1997. Cowpea (Vigna unguiculata L. Walp.). Field Crop Res. 53:187204.CrossRefGoogle Scholar
Fang, J., Chao, C., Roberts, P., and Ehlers, J. 2007. Genetic diversity of cowpea (Vigna unguiculata L. Walp.) in four West African and USA breeding programs as determined by AFLP analysis. Genet. Resour. Crop Evol. 54:11971209.CrossRefGoogle Scholar
Fery, R. L. 1981. Cowpea production in the United States. Hortscience 16:474.CrossRefGoogle Scholar
Fery, R. L. 2002. New opportunities in Vigna . Pages 424428. In Janick, J. and Whipkey, A., eds. Trends in New Crops and New Uses. Alexandria, VA ASHS Press.Google Scholar
Gianessi, L. and Reigner, N. 2005. The Outsourcing of Organic Crop Production. http://www.croplifefoundation.org/cpri_resbriefs.htm. Accessed: December 14, 2010.Google Scholar
Heap, I. 2010. International Survey of Herbicide-Resistant Weeds. http://www.weedscience.org/In.asp. Accessed: December 14, 2010.Google Scholar
Holt, J. S. 1992. History of identification of herbicide-resistant weeds. Weed Technol. 6:615620.CrossRefGoogle Scholar
Johnson, W. C., Grey, T. L., and Kissel, D. 2010. Interactive effects of soil pH, halosulfuron rate, and application method on carryover to turnip green and cabbage. Weed Technol. 24:160164.CrossRefGoogle Scholar
McNaughton, K. E., Letarte, J., Lee, E. A., and Tardif, F. J. 2005. Mutations in ALS confer herbicide resistance in redroot pigweed (Amaranthus retroflexus) and Powell amaranth (Amaranthus powellii). Weed Sci. 53:1722.CrossRefGoogle Scholar
Morelock, T. E., Motes, D. R., and Gonzalez, A. R. 1996. ‘Excel’, ‘Early Scarlet’, and ‘Arkansas Blackeye #1’: New southern pea varieties. Hortscience 31:626.CrossRefGoogle Scholar
Nandula, V. K., Poston, D. H., Reddy, K. N., and Whiting, K. 2009. Response of soybean to halosulfuron herbicide. http://downloads.hindawi.com/journals/ija/2009/754510.pdf. Accessed: April 18, 2011.Google Scholar
Quin, F. M. 1997. Introduction. Pages ixxv. In Singh, B. B., Mohan Raj, D. R., Dashiell, K. E., and Jackai, L.E.N., eds. Advances in cowpea research. International Institute of Tropical Agriculture and Japan International Research Centre for Agricultural Sciences (JIRCAS).Google Scholar
Quinn, J. and Myers, R. 2002. Alternative crop guide: Cowpea a versatile legume for hot, dry conditions. Washington, DC The Jefferson Institute. 4p.Google Scholar
Scott, B. A., Vangessel, M. J., and White-Hansen, S. 2009. Herbicide-resistant weeds in the United States and their impact on extension. Weed Technol. 23:599603.CrossRefGoogle Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America. Pp. 7678.Google Scholar
Silvey, A. D., Mitchem, W. E., Macrae, A. W., and Monks, D. W. 2006. Snap bean (Phaseolus vulgaris) tolerance to halsulfuron PRE, POST, or PRE followed by POST. Weed Technol. 20:873876.CrossRefGoogle Scholar
Blade, S. F., Shetty, S.V.R., Terao, T., and Singh, B. B. 1997. Recent advances in cowpea breeding. Pages 114128. In Singh, B. B., Mohan Raj, D. R., Dashiell, K. E., and Jackai, L.E.N., eds. Advances in Cowpea Research. Devon, UK International Institute of Tropical Agriculture and Japan International Research Center for Agricultural Sciences (JIRCAS).Google Scholar
Soltani, N., Nurse, R., Shropshire, C., and Sikkema, P. 2009. Effect of halosulfuron applied preplant incorporated, preemergence, and postemergence on dry bean. Weed Technol. 23:535539.CrossRefGoogle Scholar
U.S. Department of Energy, Bonneville Power Administration. 2011. Halosulfuron-Methyl Herbicide Factsheet. http://efw.bpa.gov/environmental_services/Document_Library/Vegetation_Management/sheets/Halosulfuron.pdf. Accessed: April 15, 2011.Google Scholar
Wise, A. M., Grey, T. L., Prostko, E. P., Vencill, W. K., and Webster, T. M. 2009. Establishing the geographical distribution and level of acetolactate synthase resistance of Palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technol. 23:214220.CrossRefGoogle Scholar