Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T09:14:13.788Z Has data issue: false hasContentIssue false

Response of Aryloxyphenoxypropionate-Resistant Grain Sorghum to Quizalofop at Various Rates and Application Timings

Published online by Cambridge University Press:  20 January 2017

M. Joy M. Abit
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Kassim Al-Khatib*
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Phillip W. Stahlman
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Patrick W. Geier
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
*
Corresponding author's E-mail: kalkhatib@ucdavis.edu.

Abstract

Conventional grain sorghum is highly susceptible to POST grass control herbicides. Development of aryloxyphenoxypropionate-resistant grain sorghum could provide additional opportunities for POST herbicide grass control in grain sorghum. Field experiments were conducted at Hays and Manhattan, KS, to determine the effect of quizalofop rate and crop growth stage on injury and yield of aryloxyphenoxypropionate-resistant grain sorghum. Quizalofop was applied at 62, 124, 186, and 248 g ai ha−1 at sorghum heights of 8 to 10, 15 to 25, and 30 to 38 cm, which corresponded to early POST (EPOST), mid-POST (MPOST), and late POST (LPOST) application timings, respectively. Grain sorghum injury ranged from 0 to 68% at 1 wk after treatment (WAT); by 4 WAT, plants generally recovered from injury. The EPOST and MPOST applications caused 9 to 68% and 2 to 48% injury, respectively, whereas injury from LPOST was 0 to 16%, depending on rate. Crop injury from quizalofop was more prominent at rates higher than the proposed use rate in grain sorghum of 62 g ha−1. Grain yields were similar in treated and nontreated plots; applications of quizalofop at different timings did not reduce yield except when applied MPOST at the Manhattan site.

El sorgo para grano convencional es altamente susceptible a herbicidas posemergente para el control de malezas gramíneas. El desarrollo del sorgo de grano resistente a los herbicidas aryloxyphenoxypropionate podría brindar oportunidades adicionales para herbicidas posemergente en el control de malezas gramíneas en el sorgo para grano. Se realizaron experimentos de campo en Hays y Manhattan, Kansas, para determinar el efecto de la dosis de quizalofop y el crecimiento del cultivo en el daño y el rendimiento del sorgo resistente al aryloxyphenoxypropionate. Se aplicó quizalofop a 62, 124, 186 y 248 g ia ha−1 a una altura de la planta de 8 a 10, 15 a 25 y 30 a 38 cm, las cuales correspondieron a los momentos de aplicación posemergente temprana, posemergente media y posemergente tardía, respectivamente. El daño al sorgo varió de 0 a 68% a 1 semana después del tratamiento (SDT); a las 4 SDT, las plantas generalmente se recuperaron del daño. Las aplicaciones posemergente temprana y posemergente media causaron de 9 a 68% y de 2 a 48% de daño, respectivamente, mientras que el daño en la aplicación posemergente tardía fue de 0 a 16%, dependiendo de la dosis. El daño al cultivo debido al quizalofop fue más notable a mayores dosis que la de 62 g ha−1 sugerida para el sorgo para grano. Los rendimientos de grano fueron similares en parcelas tratadas y en las no tratadas; las aplicaciones de quizalofop a diferentes momentos de aplicación no redujeron el rendimiento, excepto con la plicación posemergente media en Manhattan.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, . 2011. The IR-4 Project. http://ir4.rutgers.edu/FoodUse/food_Use2.cfm?PRnum=10092. Accessed January 18, 2011.Google Scholar
Anonymous, . 2010. U.S. Grain Council. http://www.grains.org/sorghum. Accessed: October 25, 2010.Google Scholar
Brown, D. W., Al-Khatib, K., Regehr, D. L., Stahlman, P. W., and Loughin, T. M. 2004. Safening grain sorghum injury from metsulfuron with growth regulator herbicides. Weed Sci. 52:319325.Google Scholar
Burton, J. D. 1997. Acetyl-coenzyme A carboxylase inhibitors. Pages 187205. In Roe, R. M., Burton, J. D. and Kuhn, R. J., eds. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Amsterdam, Netherlands IOS Press.Google Scholar
Carter, A. H., Hansen, J., Koehler, T., Thill, D. C., and Zemetra, R. S. 2007. The effect of imazamox application timing and rate on imazamox resistant wheat cultivars in the Pacific Northwest. Weed Technol. 21:895899.Google Scholar
Devine, M. D. 1989. Phloem translocation of herbicides. Rev. Weed Sci. 4:191213.Google Scholar
Devine, M. D. and Shimaburuko, R. H. 1994. Resistance to acetyl coenzyme A carboxylase inhibiting herbicides. Pages 141169. In Powles, S. B., and Holtun, J. A. M., eds. Herbicide Resistance in Plants. Boca Raton, FL CRC Press.Google Scholar
Draper, N. R. and Smith, H. 1981. Applied Regression Analysis. New York, NY Wiley. Pp. 458517.Google Scholar
Gronwald, J. W. 1994. Herbicides inhibiting acetyl-CoA carboxylase. Biochem. Soc. Trans. 22:616621.Google Scholar
Hennigh, D. S., Al-Khatib, K., and Tuinstra, M. R. 2010. Response of acetolactate synthase-resistant grain sorghum to nicosulfuron plus rimsulfuron. Weed Technol. 24:411415.CrossRefGoogle Scholar
Ishikawa, H., Tamada, S., Hosaka, H., Kawana, T., Okunuki, S., and Kohara, K. 1985. Herbicide properties of sethoxydim for the control of gramineous weeds. J. Pestic. Sci. 10:187193.Google Scholar
Kershner, K. S., Al-Khatib, K., and Tuinstra, M. R. 2009. Resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides in grain sorghum. Crop Sci. Soc. Am. Proc. 54:167–17.Google Scholar
Norris, R. F. 1980. Barnyardgrass [Echinochloa crus-galli (L.) Beauv.] competition and seed production. Proc. Weed Sci. Soc. Am. 20:5.Google Scholar
Parsells, A. J. 1985. Assure—A new postgrass herbicide from Dupont. Weeds Today. 16:910.Google Scholar
Regehr, D. L. 1998. Grain Sorghum Handbook: Weed Control. Manhattan, KS Kansas State University Agricultural Experiment Station and Cooperative Extension Service. 32 p.Google Scholar
Robinson, R. G., Nelson, W. W., Thompson, R. L., and Thompson, J. R. 1964. Herbicides and mixtures for annual weed control in grain sorghum. Weeds. 12:7779.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.CrossRefGoogle Scholar
Smith, B. S., Murray, D. S., Green, J. D., Wanyahaya, W. M., and Weeks, D. L. 1990. Interference of three annual grasses with grain sorghum (Sorghum bicolor). Weed Technol. 4:245249.Google Scholar
Smith, K., Espinoza, L., and Oliver, D. 2006. Development of effective weed control programs with crop safety in 2006 Research Summary Arkansas Corn and Sorghum Board. http://www.corn-sorghum.org/research_results/2006pdf/08 Development of Effective Weed Control Programs with Crop Safety.pdf. Accessed: January 23, 2010.Google Scholar
Stahlman, P. W. and Wicks, G. A. 2000. Weeds and their control in grain sorghum. Pages 535582. In Smith, C. W., ed. Sorghum: Origin, History, Technology, and Production. New York, NY Wiley.Google Scholar
Swisher, B. A. and Corbin, F. T. 1982. Behavior of BAS-9052OH in soybean and johnsongrass plant and cell cultures. Weed Sci. 30:640650.Google Scholar
Tuinstra, M. R. and Al-Khatib, K. 2007. New herbicide tolerance strains in sorghum. In Proceedings of the 2007 Corn, Sorghum, and Soybean Seed Research Conf. and Seed Expo. Chicago, IL Am. Seed Trade Assoc.Google Scholar
Wanamarta, G. and Penner, D. 1989. Foliar absorption of herbicides. Rev. Weed Sci. 4:215231.Google Scholar