Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T08:46:53.065Z Has data issue: false hasContentIssue false

Simulated Spray Drift of Aminocyclopyrachlor on Cantaloupe, Eggplant, and Cotton

Published online by Cambridge University Press:  20 January 2017

Michael L. Flessner*
Affiliation:
Agronomy and Soils Department, Auburn University, 201 Funchess Hall, Auburn University, AL 36849
J. Scott McElroy
Affiliation:
Agronomy and Soils Department, Auburn University, 201 Funchess Hall, Auburn University, AL 36849
Leonildo A. Cardoso
Affiliation:
United Nations Food and Agriculture Organization, Institute for Biodiersity and Protected Areas, Av. Dom Settimio Arturo Ferrazzetta Cx P. 70 Bissau, Republic of Guinea-Bissau
Dagoberto Martins
Affiliation:
Vegetable Production Department, Agricultura Fazenda Experimental Lageado – Caixa Postal 237 Rua José Barbosa de Barros, 1780 – CEP, 18610–307 – Botucatu-SP/Brazil
*
Corresponding author's E-mail: mlf0010@auburn.edu.

Abstract

Aminocyclopyrachlor (AMCP) is a herbicide with an auxin-mimic mode of action. AMCP is registered for use in the United States on right-of-way and other noncropland sites, causing concern for potential off-target spray drift. The objectives of this study were to evaluate cantaloupe and eggplant response to simulated AMCP spray drift in the field and cotton response in the greenhouse. Cantaloupe and eggplant responded with little to no injury from drift rates up to 10 g AMCP ha−1, roughly 3.2% of the maximum labeled use rate for right-of-way weed control. Slight yield reductions occurred but were not consistent between 2008 and 2009. Therefore, eggplant and cantaloupe injury and yield-reduction potential from AMCP spray drift is low. Cotton response to AMCP drift was compared to similar spray drift rates of 2,4-D and aminopyralid. Cotton responded with injury and reductions in height and dry mass from all three herbicides. Responses were greatest from AMCP, indicating AMCP is potentially more damaging to cotton than 2,4-D or aminopyralid if spray drift occurs, when comparing percentages of labeled rates.

Aminocyclopyrachlor (AMCP) es un herbicida con un modo de acción similar a las auxinas. AMCP está registrado en los Estados Unidos para el uso en bordes de caminos y en otros sitios no-agrícolas, lo que causa preocupación por el riesgo potencial de deriva hacia lugares no deseados. Los objetivos de este estudio fueron evaluar la respuesta del melón 'cantaloupe' y la berenjena a la deriva simulada de AMCP en el campo y la respuesta del algodón en el invernadero. El melón y la berenjena mostraron poco a ningún daño en respuesta a dosis de deriva de hasta 10 g AMCP ha−1, aproximadamente 3.2% de la dosis máxima de uso según la etiqueta para control de malezas en bordes de caminos. Ligeras reducciones en rendimiento ocurrieron, pero no fueron consistentes entre 2008 y 2009. De esta forma, el potencial daño y reducción en el rendimiento del melón y la berenjena producto de la deriva de AMCP es bajo. La respuesta del algodón a la deriva de AMCP fue comparable a dosis de deriva similares de 2,4-D y aminopyralid. El algodón respondió con daño y reducciones en altura y materia seca a los tres herbicidas. Las respuestas fueron mayores a AMCP, indicando que AMCP es potencialmente más dañino al algodón que 2,4-D o aminopyralid, si ocurre deriva cuando se comparan porcentajes de las dosis de etiqueta.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2007. 2,4-D LV 6 herbicide product label. Winfield Solutions Publication No. 1/0202/1. St. Paul, MN : Winfield Solutions. 12 p.Google Scholar
Anonymous. 2008. Milestone® herbicide product label. Dow AgroSciences Publication No. D02-879-003. Indianapolis, IN : Dow Agrosciences. 8 p.Google Scholar
Anonymous. 2011. ViewpointTM herbicide product label. E. I. du Pont de Nemours and Company Publication No. SL-1397. Wilmington, DE : DuPont. 13 p.Google Scholar
Claus, J. S., Turner, R. G., Meredith, J. H., Williams, C. S., and Holliday, M. J. 2010. Aminocyclopyrachlor development and registration update. Proc. South. Weed Sci. Soc. 63 :178.Google Scholar
Franzaring, J., Kempenaar, C., Pikaar, P., and van der Eerden, L. 2000. Effects of herbicide vapours on non-target plants: screening of phytotoxic effects of ethofumesate and chlorpropham on wild plant species naturally growing in ditches, hedges and field boundaries. Wageningen, the Netherlands : Plant Research International. 32 p.Google Scholar
Gannon, T. W., Yelverton, F. H., Warren, L. S., and Silcox, C. A. 2009. Broadleaf weed control with aminocyclopyrachlor (DPX-KJM44) in fine turf. Proc. South. Weed Sci. Soc. 62 :394.Google Scholar
Gilreath, J. P., Chase, C. A., and Locascio, S. J. 2001. Crop injury from sublethal rates of herbicide. III. Pepper. HortSci. 26 :677681.CrossRefGoogle Scholar
Hatterman-Valenti, H., Owen, M. D. K., and Christians, N. E. 1995. Comparison of spray drift during postemergence herbicide applications to turfgrass. Weed Technol. 9 :321325.CrossRefGoogle Scholar
Hemphill, D. and Montgomery, M. 1981. Response of vegetable crops to sublethal application of 2,4–D. Weed Sci. 29 :632635.Google Scholar
Johnson, A. K., Roeth, F. R., Martin, A. R., and Klien, R. N. 2006. Glyphosate spray drift management with drift-reducing nozzles and adjuvants. Weed Technol. 20 :893897.CrossRefGoogle Scholar
Kelley, K. B., Wax, L. M., Hager, A. G., and Riechers, D. E. 2005. Soybean response to plant growth regulator herbicides is affected by other postemergence herbicides. Weed Sci. 53 :101112.Google Scholar
Klingman, G. C. and Guedez, H. 1967. Picloram and its effect on field-grown tobacco. Weeds 15 :142146.CrossRefGoogle Scholar
Lewis, D. F., Hoyle, S. T., Fisher, L. R., Yelverton, F. H., and Richardson, R. J. 2011. Effect of simulated aminocyclopyrachlor drift on flue-cured tobacco. Weed Technol. 25 :609615.CrossRefGoogle Scholar
Marple, M. E., Al-Khatib, K., and Peterson, D. E. 2008. Cotton injury and yield as affected by simulated drift of 2,4-D and dicamba. Weed Technol. 22 :609614.Google Scholar
Marple, M. E., Al-Khatib, K., Shoup, D., Peterson, D. E., and Claassen, M. 2007. Cotton response to simulated drift of seven hormonal-type herbicides. Weed Technol. 21 :987992.Google Scholar
Maybank, J., Yoshida, K., and Grover, R. 1978. Spray drift from agricultural pesticide applications. Air Pollut. Control Assoc. J. 28 :10091014.CrossRefGoogle Scholar
Olszyk, D. M., Burdick, C. A., Pfleeger, T. G., Lee, E. H., and Watrud, L. S. 2004. Assessing the risk to non-target terrestrial plants from herbicides. J. Agric. Meteorol. 60 :221224.Google Scholar
Pimentel, D., Acquay, H., Biltonen, M., Rice, P., Silva, M., Nelson, J., Lipner, V., Gilordano, S., Horowitz, A., and D'Amore, M. 1992. Environmental and economic costs of pesticide use. BioScience 42 :750760.Google Scholar
Senseman, S. ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS : Weed Science Society of America. Pp. 322361.Google Scholar
Smith, D. B., Harris, F. D., and Goering, C. E. 1982. Variables affecting drift from ground boom sprayers. Trans. ASAE (Am. Soc. Agric. Eng.) 25 :14991503.Google Scholar
Strachan, S. D., Casini, M. S., Heldreth, K. M., Scocas, J. A., Nissen, S. J., Bukun, B., Lindenmayer, R. B., Shaner, D. L., Westra, P., and Brunk, G. 2010. Vapor movement of synthetic auxin herbicides: aminocyclopyrachlor, aminocyclopyrachlor-methyl ester, dicamba, and aminopyralid. Weed Sci. 58 :103108.CrossRefGoogle Scholar
Turner, R. G., Claus, J. S., Hidalgo, E., Holliday, M. J., and Armel, G. R. 2009. Technical introduction of the new DuPont vegetation management herbicide aminocyclopyrachlor. Proc. South. Weed Sci. Soc. 62 :405.Google Scholar
Wall, D. A. 1994. Potato (Solanum tuberosum) response to simulated drift of dicamba, clopyralid, and tribenuron. Weed Sci. 42 :110114.Google Scholar
Wall, D. A. 1996. Effect of sublethal dosages of 2,4-D on annual broadleaf crops. Can. J. Plant Sci. 76 :179185.Google Scholar
Wolf, T. M., Grover, R., Wallace, K., Shewchuk, S. R., and Maybank, J. 1992. Effect of protective shields on drift and deposition characteristics of field sprayers. Pages 2952 in Wolf, T. M. and Grover, R., The Role of Application Factors in the Effectiveness and Drift of Herbicides. Regina, SK: Saskatchewan Agriculture and Food.Google Scholar