Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T07:01:11.944Z Has data issue: false hasContentIssue false

Soybean Seedlings Tolerate Abrasion from Air-Propelled Grit

Published online by Cambridge University Press:  20 January 2017

Frank Forcella*
Affiliation:
USDA-ARS North Central Soil Conservation Research Laboratory, 803 Iowa Avenue, Morris, MN 56267
*
Corresponding author's E-mail: Frank.Forcella@ars.usda.gov

Abstract

New tools for controlling weeds would be useful for soybean production in organic systems. Air-propelled abrasive grit is one such tool that performs well for in-row weed control in corn, but crop safety in soybean is unknown. Responses to abrasion by corn-cob grit of soybean seedlings were examined at VE, VC, VU, V1, V2 (emergence, cotyledon, unifoliate, first trifoliate, and second trifoliate, respectively) and combinations of these growth stages, in both greenhouse and field settings. Seedling leaf areas and dry weights in greenhouse experiments were reduced by treatments that included abrasion at VC, with the primary effect expressed through reductions in the size of the unifoliate leaf. In the field, soybean stand also was reduced by grit applications at VC, especially if followed by a second application at VU or V1. However, soybean yield was not reduced by grit applied at any soybean stage of growth. End-of-season weed dry weights did not differ from hand-weeded checks, and weeds did not impact soybean yields. Thus, abrasive grit for in-row weed control can be applied at least twice at VE through V2 growth stages without lowering soybean yield, but applications at VC probably should be avoided.

Nuevas herramientas para el control de malezas serían útiles para los sistemas de producción orgánica de soya. La aplicación de partículas abrasivas con aire forzado es una herramienta cuyo desempeño es bueno para el control de malezas sobre la línea de siembra en maíz, pero la seguridad de esta práctica en soya es desconocida. En estudios de invernadero y campo, se examinó la respuesta a la abrasión causada por partículas de mazorcas de maíz en plántulas de soya a VE, VC, VU, V1, V2 (emergencia, cotiledón, hoja unifoliada, primera hoja trifoliada y segunda hoja trifoliada, respectivamente) y combinaciones de estos estados de desarrollo. En los experimentos de invernadero, el área foliar y el peso seco de las plántulas fueron reducidos por los tratamientos que incluyeron abrasión a VC, siendo el efecto primario reducciones en el tamaño de la hoja unifoliada. En el campo, el establecimiento de la soya también se redujo debido a las aplicaciones de partículas a VC, especialmente si fueron seguidas por una segunda aplicación a VU o V1. Sin embargo, el rendimiento de la soya no se redujo producto de la aplicación de partículas en ninguno de los estados de desarrollo. Al final de la temporada el peso seco de las malezas no difirió de los testigos con deshierba manual, y las malezas no impactaron el rendimiento de la soya. De esta forma, se puede aplicar partículas abrasivas para el control de malezas en la línea de siembra al menos dos veces entre los estados de desarrollo VE y V2, sin reducir el rendimiento de la soya, pero las aplicaciones a VC probablemente deberían ser evitadas.

Type
Note
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2008. Statistix 9 User's Manual. Analytical Software, Tallahassee, FL. 454 p.Google Scholar
Bowman, G. 1997. Steel in the Field – A Farmer's Guide to Weed Management Tools. Sustainable Agriculture Network, Beltsville, MD. 128 p.Google Scholar
Forcella, F. 2009a. Potential of air-propelled abrasives for selective weed control. Weed Technol. 23:317320.Google Scholar
Forcella, F. 2009b. Potential use of abrasive air-propelled agricultural residues for weed control. Weed Res. 49:341345.Google Scholar
Forcella, F. 2012. Air-propelled abrasive grit for postemergence weed control in field corn. Weed Technol. 26:161164.Google Scholar
Forcella, F. 2013. Short- and full-season soybean in stale seedbeds versus rolled-crimped winter rye mulch. Renew. Agric. Food Syst. 28: In press.Google Scholar
Forcella, F., Eradat-Oskoui, K. and Wagner, S.W. 1992. Application of weed seedbank ecology to low-input crop management. Ecol. Appl. 3:7483.Google Scholar
Gunsolus, J. L. 1990. Mechanical and cultural weed control in corn and soybeans. Amer. J. Altern. Agric. 5:114119.Google Scholar
Mohler, C. L. 1996. Ecological bases for the cultural control of annual weeds. J. Prod. Agric. 9:468474.Google Scholar
Rasmussen, J. 2003. Punch planting, flame weeding and stale seedbed for weed control in row crops. Weed Res. 43:393403.Google Scholar
Ulloa, S.M., Datta, A., Malidza, G., Leskovsek, R., and Knezevic, S.Z. 2010. Yield and yield components of soybean [Glycine max (L.) Merr.] are influenced by the timing of broadcast flaming. Field Crops Res. 119:348354.Google Scholar
Zhang, L., Wang, R., and Hesketh, J. D. 2001. Effect of photoperiod on growth and development of soybean floral bud in different maturity (sic). Crop Sci. 93:944948.Google Scholar