Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T10:05:55.778Z Has data issue: false hasContentIssue false

Spurred Anoda (Anoda cristata) Competition in Narrow- and Wide-Row Soybean (Glycine max)

Published online by Cambridge University Press:  20 January 2017

Eduardo C. Puricelli*
Affiliation:
Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, CC 14 (2125) Zavalla, Santa Fe, Argentina
Delma E. Faccini
Affiliation:
Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, CC 14 (2125) Zavalla, Santa Fe, Argentina
Gustavo A. Orioli
Affiliation:
Departamento de Agronomía, Universidad Nacional del Sur, (8000), Bahía Blanca, Buenos Aires, Argentina
Mario R. Sabbatini
Affiliation:
Departamento de Agronomía, Universidad Nacional del Sur, (8000), Bahía Blanca, Buenos Aires, Argentina
*
Corresponding author's E-mail: puri@arnet.com.ar

Abstract

The effect of spurred anoda competition in narrow- (35 cm) and wide-row (70 cm) soybean was studied in field experiments for 2 yr. Vigorous early soybean growth in narrow- compared with wide-row soybean resulted in lower radiation transmitted through the canopy, which can partially account for greater competitiveness of narrow-row than wide-row soybean. Soybean plant height was not significantly influenced by the row spacing. Relative yield total (RYT), which is the relationship between yield in mixtures and in monocultures of the crop or the weed and indicates resource complementarity, was equal to 1 with 12 spurred anoda/m2 in the year with less precipitation. Regardless of the row spacing, spurred anoda gave resource use complementarity with the crop (RYT > 1) in all other treatments; therefore, partial avoidance of competition in mixed species was evident. Soybean aggressivity, which takes into account the effect of competition on both the crop and the weed and indicates competitive ability, decreased with weed density in both row spacings. Soybean yield loss at harvest was linearly related to relative dry weight 40 d after planting. Weed-free narrow- and wide-row soybean produced similar yields. In the presence of the spurred anoda, soybean yield was greater in narrow-row compared with wide-row soybean only in the most humid year. A management system that uses quick canopy closure with narrow-row soybean can provide excellent soybean yield and suppression of low spurred anoda densities.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bauer, T. A., Mortensen, D. A., Wicks, G. A., Hayden, T. A., and Martin, R. A. 1991. Environmental variability associated with economic thresholds for soybeans. Weed Sci. 39: 564569.CrossRefGoogle Scholar
Buhler, D. D., Gunsolus, J. L., and Ralston, D. F. 1993. Common cocklebur (Xanthium strumarium) control in soybeans (Glycine max) with reduced bentazon rates and cultivation. Weed Sci. 41: 447453.CrossRefGoogle Scholar
Crotser, M. P. and Witt, W. W. 2000. Effect of Glycine max canopy characteristics, G. max interference, and weed-free period on Solanum ptycanthum growth. Weed Sci. 48: 2026.CrossRefGoogle Scholar
Defelice, M. S., Brown, W. B., Aldrich, R. J., Sims, B. D., Judy, D. T., and Guethle, D. R. 1989. Weed control in soybeans (Glycine max) with below-label rates of postemergence herbicides. Weed Sci. 37: 365374.CrossRefGoogle Scholar
Deibert, E. J. 1989. Soybean cultivar response to reduced tillage systems in northern dryland areas. Agron. J. 81: 672676.CrossRefGoogle Scholar
Elmore, R. W. 1987. Soybean cultivar response to tillage systems. Agron. J. 77: 459465.Google Scholar
Hamill, A. S., Zhang, J., and Swanton, C. 1994. Reducing herbicide use for weed control in soybean (Glycine max) grown in two soil types in southwestern Ontario. Can. J. Plant Sci. 75: 283292.CrossRefGoogle Scholar
Johnson, G. A., Hoverstad, T. H., and Greenwald, R. E. 1997. Integrated weed management using narrow row crop spacing, herbicides and cultivation. Agron. J. 90: 4046.Google Scholar
Kropff, M. J. and Lotz, L. A. P. 1993. Empirical models for crop-weed competition. In Kropff, M. J. and van Larr, H. H., eds. Modelling Crop-Weed Interactions. U.K.: CAB International. pp. 924.Google Scholar
Leguizamón, E., Faccini, D., and Nisensohn, L. et al. 1994. Funciones de daño y cálculos de pérdidas por malezas en el cultivo de soja. Informe técnico No. 296. INTA Pergamino. Ed. R. Parisi. R. 19 p.Google Scholar
Leiva, P. and Ianone, N. 1994. Soja: El problema de las malezas y su control. Segunda parte: Presencia y evolución de las principales especies. Carpeta de Producción Vegetal. Area de Agronomía. EEA Pergamino. ISSN 0326-2354. Información No. 119. pp. 14.Google Scholar
Lindquist, J. L., Mortensen, D. A., and Johnson, B. E. 1998. Mechanisms of corn tolerance and velvetleaf suppressive ability. Agron. J. 90: 787792.CrossRefGoogle Scholar
Lutman, P. J. W., Risiott, R., and Ostermann, H. P. 1996. Investigations into alternative methods to predict the competitive effect of weeds on crop yields. Weed Sci. 44: 290297.Google Scholar
Mattioli, A. J. 1984. Control de malezas en el cultivo de soja. Actas de la X reunión Argentina sobre la maleza y su control. Tucumán. Argentina 1: C-53–C-70.Google Scholar
McGilchrist, C. A. and Trenbath, B. R. 1971. A revised analysis of plant competition experiments. Biometrics 27: 659671.Google Scholar
Paolini, R., Del Puglia, S., Principi, M., Barcelona, O., and Riccardi, E. 1998. Competition between safflower and weeds as influenced by crop genotype and sowing date. Weed Res. 38: 247255.Google Scholar
Paolini, R., Principi, M., Froud-Williams, R. J., Del Puglia, S., and Biancardi, E. 1999. Competition between sugarbeet and Sinapis arvensis and Chenopodium album, as affected by timing of nitrogen fertilization. Weed Res. 39: 425440.Google Scholar
Prostko, E. P. and Meade, J. A. 1993. Reduced rates of postemergence herbicides in conventional soybean (Glycine max). Weed Sci. 38: 541545.Google Scholar
Shaw, D. R., Rankins, A. Jr., and Ruscoe, J. T. 1997. Sicklepod (Senna obtusifolia) interference with soybean (Glycine max) cultivars following herbicide treatments. Weed Technol. 11: 510514.Google Scholar
Snaydon, R. W. 1991. Replacement or additive designs for competition studies? J. Appl. Ecol. 28: 930946.Google Scholar
Snaydon, R. W. and Satorre, E. H. 1989. Bivariate diagrams for plant competition data: modifications and interpretations. J. Appl. Ecol. 26: 10431057.CrossRefGoogle Scholar
Spitters, C. J. T. and Van der Bergh, J. P. 1982. Competition between crop and weeds: a system approach. In Holzner, M. and Numata, W., eds. Biology and Ecology of Weeds. The Hague: Junk Publishers. pp. 137148.Google Scholar
Steckel, L. E., Defelice, M. S., and Sims, B. D. 1990. Integrating reduced rates of postemergence herbicides and cultivation for broadleaf weed control in soybeans (Glycine max). Weed Sci. 38: 541545.Google Scholar
Swanton, C. J., Weaver, S., Cowan, P., Van Acker, R., Deen, W., and Shreshta, A. 1999. Weed thresholds: theory and applicability. J. Crop Prod. 2: 929.CrossRefGoogle Scholar
Vitta, J. I. and Satorre, E. 1999. Validation of a weed: crop competition model. Weed Res. 39: 259269.Google Scholar
Vitta, J., Tuesca, D., Puricelli, E., Nisensohn, L., Faccini, D., and Ferrari, y G. 2000. Consideraciones acerca del manejo de malezas en cultivares de soja resistentes a glifosato. UNR Editora. 15 p.Google Scholar
Wax, L. M., Nave, W. R., and Cooper, R. L. 1997. Weed control in narrow and wide row soybeans (Glycine max). Weed Technol. 7: 365369.Google Scholar
Wells, R. 1993. Dynamics of soybean growth in variable row spacings. Agron. J. 85: 4448.Google Scholar
Wit, C. T de 1960. On competition. Verslagen van Landbouwkundige Onderzoekingen 66: 182.Google Scholar