Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T10:32:17.507Z Has data issue: false hasContentIssue false

Sulfentrazone for Weed Control in Soybean (Glycine max)

Published online by Cambridge University Press:  12 June 2017

Ronald F. Krausz
Affiliation:
Department of Plant, Soil, and General Agriculture, Southern Illinois University, Carbondale, IL 62901
George Kapusta
Affiliation:
Department of Plant, Soil, and General Agriculture, Southern Illinois University, Carbondale, IL 62901
Joseph L. Matthews
Affiliation:
Department of Plant, Soil, and General Agriculture, Southern Illinois University, Carbondale, IL 62901

Abstract

Field studies were conducted over 4 yr to evaluate weed control and soybean injury with sulfentrazone applied preplant incorporated or preemergence alone and in combination with imazaquin, metribuzin, or cloransulam. Sulfentrazone at 280 g ai/ha controlled yellow nutsedge, common waterhemp, ivyleaf morningglory, and velvetleaf 92 to 100% 56 days after planting (DAP). At 420 g/ha, sulfentrazone controlled giant foxtail 80 to 94% 21 DAP. Sulfentrazone controlled common ragweed 17 to 93% and common cocklebur 57 to 91%. Giant foxtail, common cocklebur, and common ragweed control with sulfentrazone at lower rates was improved with the addition of metribuzin or cloransulam. Sulfentrazone caused no visual soybean injury and did not reduce yield compared with standard herbicides.

Type
Research
Copyright
Copyright © 1998 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 1995. Authority® Technical Bulletin. FMC Corporation Agricultural Products group. Philadelphia. PA.Google Scholar
Cantwell, J. R., Liebl, R. A., and Slife, F. W. 1989. Imazethapyr for weed control in soybean (Glycine max). Weed Technol. 3:596601.Google Scholar
Dayan, F. E., Green, H. M., Weete, J. D., and Hancock, H. G. 1996a. Postemergence activity of sulfentrazone: effects of surfactants and leaf surfaces. Weed Sci. 44:797803.CrossRefGoogle Scholar
Dayan, F. E., Weete, J. D., and Hancock, H. G. 1996b. Physiological basis for differential sensitivity to sulfentrazone by sicklepod (Senna obtusifolia) and coffee senna (Cassia occidentalis) Weed Sci. 44:1217.Google Scholar
Dayan, F. E., Weete, J. D., Duke, S. O., and Hancock, H. G. 1997. Soybean (Glycine max) cultivar differences in response to sulfentrazone. Weed Sci. 45:634641.Google Scholar
Duke, S. O., Lydon, J., Becerril, J. M., Sherman, T. D., Lehnen, L. P. Jr., and Matsumoto, H. 1991. Protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci. 39:465473.Google Scholar
Green, J. M., Obrigawitch, T. T., Long, J. D., and Hutchison, J. M. 1988. Metribuzin and chlorimuron mixtures for preemergence broadleaf weed control in soybeans. Glycine max. Weed Technol. 2:355363.CrossRefGoogle Scholar
Grey, T. L., Walker, R. H., Wehtje, G. R., and Hancock, H. G. 1997. Sulfentrazone adsorption and mobility as affected by soil and pH. Weed Sci. 45:733738.Google Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9:192195.Google Scholar
Kapusta, G. and Krausz, R. F. 1993. Weed control and yield are equal in conventional, reduced-, and no-tillage soybean (Glycine max) after 11 years. Weed Technol. 7:443451.Google Scholar
Klingaman, T. E., King, C. A., and Oliver, L. R. 1992. Effect of application rate, weed species, and weed stage of growth on imazethapyr activity. Weed Sci. 40:227232.CrossRefGoogle Scholar
Lovell, S. T., Wax, L. M., Horak, M. J., and Peterson, D. E. 1996. Imidazolinone and sulfonylurea resistance in a biotype of common waterhemp (Amaranthus rudis). Weed Sci. 44:789794.Google Scholar
Matringe, M., Camadro, J. M., Labbe, P., and Scalla, R. 1989. Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem. J. 260:231235.Google Scholar
Shaw, D. R. and Wixson, M. B. 1991. Postemergence combinations of imazaquin or imazethapyr with AC 263,222 for weed control in soybean (Glycine max). Weed Sci. 39:644649.Google Scholar
Vidrine, P. R., Griffin, J. L., Jordan, D. L., and Reynolds, D. B. 1996. Broadleaf weed control in soybean (Glycine max) with sulfentrazone. Weed Technol. 10:762765.Google Scholar
Wehtje, G. R., Walker, R. W., Grey, T. L., and Hancock, H. G. 1997. Response of purple (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) to selective placement of sulfentrazone. Weed Sci. 45:382387.Google Scholar
Witkowski, D. A. and Hailing, B. P. 1989. Inhibition of plant protoporphyrinogen oxidase by the herbicide acifluorfen-methyl. Plant Physiol. 90:12391242.Google Scholar
Wright, T. R., Fuerst, E. P., Ogg, A. G. Jr., Nandihalli, U. B., and Lee, H. J. 1995. Herbicidal activity of UCC-C4243 and acifluorfen is due to inhibition of protoporphyrinogen oxidase. Weed Sci. 43:4754.Google Scholar