Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T20:00:52.224Z Has data issue: false hasContentIssue false

Summer Annual Weed Control with 2,4-D and Glyphosate

Published online by Cambridge University Press:  20 January 2017

Andrew P. Robinson
Affiliation:
Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, IN 47907
David M. Simpson
Affiliation:
Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268
William G. Johnson*
Affiliation:
Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, IN 47907
*
Corresponding author's E-mail: wgj@purdue.edu

Abstract

The introduction of 2,4-D-resistant crops stacked with glyphosate resistance will enable the use of 2,4-D and glyphosate for weed control in corn, cotton, and soybean. Because there is little reported on the effectiveness of 2,4-D plus glyphosate on summer annual weed control, the objective was to evaluate 2,4-D and glyphosate tank mixtures on summer annual weed control. Six rates of 2,4-D (0, 280, 420, 560, 840, and 1,120 g ae ha−1) and three rates of glyphosate (0, 840, and 1,120 g ae ha−1) were applied to common lambsquarters, common waterhemp, giant ragweed, giant foxtail, and velvetleaf. Glyphosate at 840 g ha−1 controlled all weeds 94 to 100%. Giant ragweed was controlled 99 to 100% by 2,4-D alone when rates were 280 g ha−1 or higher. Common lambsquarters, common waterhemp, and velvetleaf control increased as 2,4-D rates increased, with 1,120 g ha−1 providing 90 to 94% control.

La introducción de cultivos con resistencia a 2,4-D en combinación con resistencia a glyphosate hará posible el uso de 2,4-D y glyphosate para el control de malezas en maíz, algodón y soya. Debido a que hay pocos reportes sobre la efectividad de 2,4-D más glyphosate en el control de malezas anuales de verano, el objetivo fue evaluar mezclas en tanque de 2,4-D y glyphosate en el control de estas malezas. Seis dosis de 2,4-D (0, 280, 420, 560, 840 y 1120 g ae ha−1) y tres dosis de glyphosate (0, 840 y 1120 g ae ha−1) fueron aplicadas a Chenopodium album, Amaranthus rudis, Ambrosia trifida, Setaria faberi y Abutilon theophrasti. Glyphosate a 840 g ha−1 controló todas las malezas de 94 a 100%. A. trifida fue controlada 99 a 100% con 2,4-D solamente cuando las dosis fueron 280 g ha−1 o mayores. El control de C. album, A. rudis y A. theophrasti aumentó al incrementarse las dosis de 2,4-D, con 1120 g ha−1 brindando 90 a 94% de control.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrens, W. H., Cox, D. J., and Budhwar, G. 1990. Use of the arcsine and square root transformations for subjectively determined percentage data. Weed Sci. 38 :452458.Google Scholar
Beckie, H. J. 2006. Herbicide-resistant weeds: management tactics and practices. Weed Technol. 20 :793814.Google Scholar
Box, G.E.P., Hunter, W. G., and Hunter, J. S. 1978. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. New York : J. Wiley. 653 p.Google Scholar
Flint, J. L. and Barrett, M. 1989. Antagonism of glyphosate toxicity to johnsongrass (Sorghum halepense) by 2,4-D and dicamba. Weed Sci. 37 :700705.Google Scholar
Heap, I. M. 2012. International survey of herbicide resistant weeds. http://www.weedscience.com. Accessed: February 27, 2012.Google Scholar
Johnson, W. G., Davis, V. M., Kruger, G. R., and Weller, S. C. 2009. Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations. Eur. J. Agron. 31 :162172.Google Scholar
Loux, M. M., Doohan, D., Dobbels, A. F., Johnson, W. G., Nice, G.R.W., Jordan, T. N., and Bauman, T. T. 2010. Weed control guide for Ohio and Indiana. OSU Extension Pub. # WS16. Columbus, OH: The Ohio State University. 192 p.Google Scholar
O'Sullivan, P. A. and O'Donovan, J. T. 1980. Interactions between glyphosate and various herbicides for broad-leaved weed control. Weed Res. 10 :255260.Google Scholar
Scherder, E. R., Schultz, M. E., Ellis, A. T., Spomer, N. A., Hamm, R. L., Richburg, J. S., Huff, J. A., Olsen, B. D., and Tofoli, G. R. 2010. Efficacy and crop tolerance of GF-2654 and GF-2726 in corn. Proc. North Cent. Weed Sci. Soc. 65:129, 13–16 Dec. 2010. Lexington, KY.Google Scholar
[USDA-NASS] U.S. Department of Agriculture National Agricultural Statistics Service. 2012. Agricultural chemical use database. http://www.pestmanagement.info/nass. Accessed: March 5, 2012.Google Scholar
Westhoven, A. M., Kruger, G. R., Gerber, C. K., Stachler, J. M., Loux, M. M., and Johnson, W. G. 2008. Characterization of selected common lambsquarters (Chenopodium album) biotypes with tolerance to glyphosate. Weed Sci. 56 :685691.CrossRefGoogle Scholar
Wright, T. R., Shan, G., Walsh, T. A., Lira, J. M., Cui, C., Song, P., Zhuang, M., Arnold, N. L., Lin, G., Yau, K., Russell, S. M., Cicchillo, R. M., Peterson, M. A., Simpson, D. M., Zhou, N., Ponsamuel, J., and Zhang, Z. 2010. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc. Natl. Acad. Sci. USA 107 :20,24020,245.Google Scholar