Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T08:28:33.112Z Has data issue: false hasContentIssue false

A Survey for Diclofop-Methyl Resistance in Italian Ryegrass from Tennessee and How To Manage Resistance in Wheat

Published online by Cambridge University Press:  20 January 2017

Andrew T. Ellis
Affiliation:
Department of Plant Sciences, University of Tennessee, Knoxville, TN 37901
Lawrence E. Steckel
Affiliation:
Department of Plant Sciences, University of Tennessee, Knoxville, TN 37901
Christopher L. Main
Affiliation:
Department of Plant Sciences, University of Tennessee, Knoxville, TN 37901
Marcel S. C. De Melo
Affiliation:
Sao Paulo University, Sao Paulo, Brazil
Dennis R. West
Affiliation:
Department of Plant Sciences, University of Tennessee, Knoxville, TN 37901
Thomas C. Mueller*
Affiliation:
Department of Plant Sciences, University of Tennessee, Knoxville, TN 37901
*
Corresponding author's E-mail: tmueller@utk.edu.

Abstract

Italian ryegrass resistance to diclofop has been documented in several countries, including the United States. The purpose of this research was to screen selected putative resistant populations of Italian ryegrass for resistance to the acetyl-CoA carboxylase (ACCase)–inhibiting herbicides diclofop and pinoxaden and the acetolactate synthase (ALS)–inhibiting herbicides imazamox, pyroxsulam, and mesosulfuron in the greenhouse and to use field experiments to develop herbicide programs for Italian ryegrass control. Resistance to diclofop was confirmed in eight populations from Tennessee. These eight populations did not show cross-resistance to pinoxaden. One additional population (R1) from Union County, North Carolina, was found to be resistant to both diclofop and pinoxaden. The level of resistance to pinoxaden of the R1 population was 15 times that of the susceptible population. No resistance was confirmed to any of the ALS-inhibiting herbicides examined in this research. Field experiments demonstrated PRE Italian ryegrass control with chlorsulfuron (71 to 94%) and flufenacet + metribuzin (84 to 96%). Italian ryegrass control with pendimethalin applied PRE or delayed preemergence (DPRE) was variable (0 to 85%). POST control of Italian ryegrass was acceptable with pinoxaden, mesosulfuron, flufenacet + metribuzin, and chlorsulfuron + flucarbazone (> 80%). Application timing and herbicide treatment had no effect on wheat yield, except for diclofop and pendimethalin treatments, in which uncontrolled Italian ryegrass reduced wheat yield.

La resistencia de Lolium perenne L. ssp. multiflorum Lam. Husnot LOLMU al diclofop ha sido documentada en varios países incluyendo los EU. El propósito de este trabajo fue examinar la supuesta resistencia de poblaciones seleccionadas de Lolium perenne L. spp. multiflorum Lam. Husnot LOLMU a herbicidas inhibidores de AC Case diclofop y pinoxaden y a los herbicidas inhibidores ALS imazamox, pyroxsulam y mesosulfuron en el invernadero. También fue su objetivo, utilizar experimentos de campo para desarrollar programas de herbicidas en el control de Lolium perenne L. spp. multiflorum Lam. Husnot LOLMU. La resistencia al diclofop se confirmó en ocho poblaciones de Tennessee. Estas ocho poblaciones no mostraron resistencia cruzada a pinoxaden. Una población adicional del condado Unión de Carolina del Norte (R1) fue detectada como resistente a ambos diclofop y pinoxaden. El nivel de resistencia al pinoxaden de la población (R1) resultó ser 15 veces mayor que el de la población susceptible. No se confirmó resistencia a ninguno de los herbicidas inhibidores ALS examinados en esta investigación. Experimentos de campo mostraron control de Lolium perenne L. spp. multiflorum Lam. Husnot LOLMU en pre-emergencia (PRE) con chlorosulfuron (71 a 94%), y flufenacet + metribuzin (84 a 96%). El control de Lolium perenne L. spp. multiflorum Lam. Husnot LOLMU con pendimetalina PRE o Pre-emergencia tardía (DPRE) fue variable (0 a 85%). El control post-emergencia de Lolium perenne L. spp. multiflorum Lam. Husnot LOLMU alcanzó un nivel aceptable con pinoxaden, mesosulfuron, flufenacet + metribuzin, y chlorsulfuron + flucarbazone (> 80%). El tiempo de aplicación y el tipo de herbicida no tuvo efecto en el rendimiento del trigo, excepto en el caso de los tratamientos de diclofop y pendimetalina donde la falta de control de Lolium perenne L. spp. multiflorum Lam. Husnot LOLMU redujo el rendimiento del trigo.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Appleby, A. P., Olson, P. D., and Colbert, D. R. 1976. Winter-wheat yield reduction from interference by Italian ryegrass. Agron. J. 68:463466.CrossRefGoogle Scholar
Bailey, W. A. and Wilson, H. P. 2003. Control of Italian ryegrass (Lolium multiflorum) in wheat (Triticum aestivum) with postemergence herbicides. Weed Technol 17:534542.Google Scholar
Boeger, M., Cederbaum, F., Cornes, D., Friedmann, A. A., Glock, J., Muehlebach, M., and Niderman, T. 2006. Milestones in the discovery of pinoxaden: a unique graminicide for global use in cereal crop. Axial Herbicide Release Publication. Basel, Switzerland: Syngenta Crop Protection AG.Google Scholar
Burton, J. D., Gronwald, J. W., Somers, D. A., Gegenbach, B. G., and Wyse, D. L. 1989. Inhibition of corn acetyl-coA carboxylase by cyclohexanedione and aryloxyphenoxypropionate herbicides. Pestic. Biochem. Physiol 34:7685.CrossRefGoogle Scholar
Choker, R. S. and Sharma, R. K. 2008. Multiple herbicide resistance in littleseed canarygrass (Phalaris minor): a threat to wheat production in India. Weed Biol. Manage 8:112123.Google Scholar
Crooks, H., York, A. C., and Jordan, D. L. 2003. Wheat (Triticum aestivum) tolerance and Italian ryegrass (Lolium multiflorum) control by AE F130060 00 plus AE F115008 00 mixed with other herbicides. Weed Technol 17:881889.Google Scholar
Delye, C. 2005. Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci 53:728746.Google Scholar
Ellis, A. T., Morgan, G. D., and Mueller, T. C. 2008. Mesosulfuron-resistant Italian ryegrass (Lolium multiflorum) biotype from Texas. Weed Technol 22:431434.Google Scholar
Grey, T. L. and Bridges, D. C. 2003. Alternatives to diclofop for the control of Italian ryegrass (Lolium multiflorum) in winter wheat (Triticum aestivum). Weed Technol 17:219223.Google Scholar
Gronwald, J. W., Eberlein, C. V., Betts, K. J., Baerg, R. J., Ehlke, N. J., and Wyse, D. L. 1992. Mechanism of diclofop resistance in an Italian ryegrass (Lolium-Multiflorum Lam) biotype. Pestic. Biochem. Physiol 44:26139.Google Scholar
Hashem, A., Radosevich, S. R., and Roush, M. L. 1998. Effect of proximity factors on competition between winter wheat (Triticum aestivum) and Italian ryegrass (Lolium multiflorum). Weed Sci 46:181190.Google Scholar
Heap, I. 2009. International survey of herbicide resistant weeds. http://www.weedscience.com. Accessed: February 27, 2009.Google Scholar
Hochberg, O., Sibony, M., and Rubin, B. 2008. The response of ACCase-resistant Phalaris paradoxa populations involves two different target site mutations. Weed Res 49:3746.CrossRefGoogle Scholar
Kuk, Y. I. and Burgos, N. R. 2007. Cross-resistance profile of mesosulfuron-methyl-resistant Italian ryegrass in the southern United States. Pest Manag. Sci 63:349357.Google Scholar
Kuk, Y. I., Burgos, N. R., and Scott, R. C. 2008. Resistance profile of diclofop-resistant Italian ryegrass (Lolium multiflorum) to ACCase- and ALS-inhibiting herbicides in Arkansas, USA. Weed Sci 56:614623.Google Scholar
Kuk, Y. I., Burgos, N. R., and Talbert, R. E. 2000. Cross- and multiple resistance of diclofop-resistant Lolium spp. Weed Sci 48:412419.Google Scholar
Kuk, Y. I., Wu, J. R., Derr, J. F., and Hatzios, K. K. 1999. Mechanism of fenoxaprop resistance in an accession of smooth crabgrass (Digitaria ischaemum). Pestic. Biochem. Physiol 64:112123.Google Scholar
LaRossa, R. A. and Schloss, J. V. 1984. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of Acetolactate synthase in Salmonella typhimurium . J. Biol. Chem 14:87538757.Google Scholar
Leach, G. E., Devine, M. D., Kirkwood, R. C., and Marshall, G. 1995. Target enzyme-based resistance to acetyl-coenzyme-A carboxylase inhibitors in Eleusine-Indica . Pestic. Biochem. Physiol 51:129136.Google Scholar
Main, C. L., Mueller, T. C., Hayes, R. M., and Wilkerson, J. B. 2004. Response of selected horseweed (Conyza canadensis L. Cronq.) populations to glyphosate. J. Agric. Food Chem 52:879883.Google Scholar
Maneechote, C., Holtum, J. A. M., Preston, C., and Powles, S. B. 1994. Resistant acetyl-Coa carboxylase is a mechanism of herbicide resistance in a biotype of Avena-Sterilis ssp Ludoviciana . Plant Cell Physiol 35:627635.CrossRefGoogle Scholar
Marles, M. A. S., Devine, M. D., and Hall, J. C. 1993. Herbicide resistance in Setaria-viridis conferred by a less sensitive form of acetyl Coenzyme-A carboxylase. Pestic. Biochem. Physiol 46:714.Google Scholar
Mueller, T. C., Mitchell, P. D., Young, B. G., and Culpepper, A. S. 2005. Proactive versus reactive management of glyphosate-resistant or -tolerant weeds. Weed Technol 19:924933.Google Scholar
SAS 2009. SAS User's Guide, version 8.1. Cary, NC: Statistical Analysis Systems Institute.Google Scholar
Seefeldt, S. S., Fuerst, E. P., Gealy, D. R., Shukla, A., Irzyk, G. P., and Devine, M. D. 1996. Mechanisms of resistance to diclofop of two wild oat (Avena fatua) biotypes from the Willamette Valley of Oregon. Weed Sci 44:776781.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol 9:218227.Google Scholar
Senseman, S. A. 2007a. Pinoxaden. Herbicide Handbook WSSA 9th ed. 38.Google Scholar
Senseman, S. A. 2007b. Summary of Herbicide Mechanism of Action: Fatty Acid and Lipid Biosynthesis Inhibitors. 9th ed. Herbicide Handbook. Lawrence, KS: Weed Science Society of America. 14.Google Scholar
Shukla, A., Leach, G. E., and Devine, M. D. 1997. High-level resistance to sethoxydim conferred by an alteration in the target enzyme, acetyl-CoA carboxylase, in Setaria faberi and Setaria viridis . Pestic. Biochem. Physiol 35:803807.Google Scholar
Stanger, C. E. and Appleby, A. P. 1989. Italian ryegrass (Lolium-Multiflorum) accessions tolerant to diclofop. Weed Sci 37:350352.Google Scholar
Tardif, F. J., Holtum, J. A. M., and Powles, S. B. 1993. Occurrence of a herbicide-resistant acetyl-Coenzyme-A carboxylase mutant in annual ryegrass (Lolium-Rigidum) selected by sethoxydim. Planta 190:176181.Google Scholar
Uludag, A., Park, K. W., Cannon, J., and Mallory-Smith, C. A. 2008. Cross resistance of Acetyl-CoA carboxylase (ACCase) inhibitor-resistant wild oat (Avena fatua) biotypes in the Pacific Northwest. Weed Technol 22:142145.Google Scholar