Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T21:24:26.519Z Has data issue: false hasContentIssue false

Synthetic Auxin Herbicides Control Germinating Scotch Broom (Cytisus scoparius)

Published online by Cambridge University Press:  20 January 2017

Timothy B. Harrington*
Affiliation:
U.S. Department of Agriculture Forest Service, Pacific Northwest Research Station, 3625 93rd Avenue SW, Olympia, WA 98512
*
Corresponding author's E-mail: tharrington@fs.fed.us.

Abstract

Scotch broom is a large, nonnative shrub that has invaded forests and grasslands in 27 U.S. states. Without treatment, Scotch broom's persistent seedbank ensures a continuing source of regeneration after soil disturbance. In growth chamber studies, five rates of three synthetic auxin herbicides, aminocyclopyrachlor (AC), aminopyralid (AP), and clopyralid (CP), were compared for PRE control of Scotch broom. Cumulative 90-d emergence, mortality, and biomass of seedlings did not vary among herbicides, averaging 42% of seeds sown, 75% of emerged seedlings, and 9 mg seedling−1 for treated containers, respectively, versus 46%, 17%, and 26 mg seedling−1 for nontreated containers. Low rates of each herbicide (< 50% of the maximum labeled rate [MLR]) provided 60 to 80% control, whereas 100% MLR provided 69 to 89% control. Although the herbicides differed in cost per unit seedling mortality (AP < CP < AC), each demonstrated strong potential as a viable treatment for PRE control of Scotch broom.

Cytisus scoparius es un arbusto no-nativo y de gran tamaño que ha invadido bosques y pastizales en 27 estados de los Estados Unidos. Sin tratamiento, el persistente banco de semillas de C. scoparius asegura una continua fuente de regeneración después de la perturbación del suelo. En estudios en cámaras de crecimiento, cinco dosis de tres herbicidas auxinas sintéticas, aminocyclopyrachlor (AC), aminopyralid (AP), y clopyralid (CP), fueron comparados para el control PRE de C. scoparius. La emergencia acumulada a 90-d, la mortalidad, y la biomasa de plántulas no varió entre herbicidas, promediando 42% de las semillas sembradas, 75% de las plántulas emergidas, y 9 mg plántula−1 para contenedores tratados, respectivamente, versus 46%, 17%, y 26 g plántula−1 para contenedores no tratados. Dosis bajas de cada herbicida (<50% de la dosis máxima de la etiqueta [MLR]) brindaron 60 a 80% de control, mientras 100% de la MLR brindó 69 a 89% de control. Aunque los herbicidas difirieron en el costo por unidad de mortalidad de plántulas (AP < CP < AC), cada uno demostró un fuerte potencial como tratamiento viable para el control PRE de C. scoparius.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Almquist, TL, Lym, RG (2010) Effect of aminopyralid on Canada thistle (Cirsium arvense) and the native plant community in a restored tallgrass prairie. Invasive Plant Sci Manage 3:155168 Google Scholar
Bossard, CC (1993) Seed germination in the exotic shrub Cytisus scoparius (Scotch broom) in California. Madroño 40:4761 Google Scholar
Bossard, CC, Rejmánek, M (1994) Herbivory, growth, seed production, and resprouting of an exotic invasive shrub, Cytisus scoparius . Biol Conserv 67:193200 Google Scholar
Claus, JS, Holliday, MJ, Turner, RG, Meredith, JH, Williams, CS (2010) Aminocyclopyrachlor, a new herbicide for vegetation management, development and registration update. Proc West Soc Weed Sci 63:41 Google Scholar
DiTomaso, JM, Brooks, ML, Allen, EB, Minnich, R, Rice, PM, Kyser, GB (2006) Control of invasive weeds with prescribed burning. Weed Technol 20:535548 Google Scholar
Draper, NR, Smith, H (1981) Applied Regression Analysis. 2nd edn. New York: John Wiley and Sons. Pp 9192 Google Scholar
Gilkey, HM (1957) Weeds of the Pacific Northwest. Corvallis, OR: Oregon State College. 382 pGoogle Scholar
Halstvedt, MB, Cummings, DC, Almquist, T, Samuel, L, Lym, RG, Beck, KG, Becker, RL, Duncan, CA, Rice, PM (2010) Native forb and shrub tolerance to Milestone® herbicide. Helena, MT: Techline, Fall Issue Google Scholar
Harrington, TB (2009) Seed germination and seedling emergence of Scotch broom (Cytisus scoparius). Weed Sci 57:620626 CrossRefGoogle Scholar
Harrington, TB, Schoenholtz, SH (2010) Effects of logging debris treatments on five-year development of competing vegetation and planted Douglas-fir. Can J For Res 40:500510 Google Scholar
Harrington, TB, Peter, DH, Devine, WD (2014) Two-year effects of aminopyralid on an invaded meadow in the Washington Cascades. Invasive Plant Sci Manage. 7:1424 Google Scholar
Haubensak, KA, D'Antonio, CM, Alexander, J (2004) Effects of nitrogen-fixing shrubs in Washington and coastal California. Weed Technol 18:14751479 CrossRefGoogle Scholar
Herrera-Reddy, AM, Carruthers, RI, Mills, NJ (2012) Integrated management of Scotch broom (Cytisus scoparius) using biological control. Invasive Plant Sci Manage 5:6982 Google Scholar
Invasive Plant Atlas (2012) U.S. Distribution Maps for Scotch Broom (Cytisus scoparius) http://www.invasiveplantatlas.org. Accessed December 7, 2012Google Scholar
Iowa State University Extension Agronomy (2012) Aminopyralid—New Herbicide for Pastures, Roadsides, etc. http://www.weeds.iastate.edu/mgmt/2006/aminopyralid.shtml. Accessed December 14, 2012Google Scholar
Jachetta, JJ, Havens, PL, Dybowski, JA, Kranzfelder, JA, Tiu, C (2005) Aminopyralid: a new reduced risk herbicide for invasive species control: toxicology, ecotoxicology, and environmental fate profile. Proc West Soc Weed Sci 58:6061 Google Scholar
Ketchum, JS, Rose, R (2003) Preventing establishment of exotic shrubs [Cytisus scoparius (L.) Link. and Cytisus striatus (Hill)] with soil active herbicides (hexazinone, sulfometuron, and metsulfuron). New For 25:8392 Google Scholar
Neter, J, Wasserman, W, Kutner, MH (1989) Applied Linear Regression Models. 2nd edn. Homewood, IL: Richard D. Irwin. Pp 271284 Google Scholar
Oneto, SR, Kyser, GB, DiTomaso, JM (2010) Efficacy of mechanical and herbicide control methods for Scotch broom (Cytisus scoparius) and cost analysis of chemical control options. Invasive Plant Sci Manage 3:421428 Google Scholar
Peter, DH, Harrington, TB (2012) Herbicide and logging debris effects on development of plant communities after forest harvesting in the Pacific Northwest. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station Res. Pap. PNW-RP-589. 37 pGoogle Scholar
Rees, M, Paynter, Q (1997) Biological control of Scotch broom: modelling the determinants of abundance and the potential impact of introduced insect herbivores. J Appl Ecol 34:12031221 Google Scholar
Samuel, LW, Lym, RG (2008) Aminopyralid effect on Canada thistle (Cirsium arvense) and native species. Invasive Plant Sci Manage 1:265278 Google Scholar
SAS, Inc. (2008) The SAS System for Windows. Version 9.2. Cary, NC: SAS Google Scholar
Sheppard, AW, Hodge, P, Paynter, Q, Rees, M (2002) Factors affecting invasion and persistence of broom Cytisus scoparius in Australia. J Appl Ecol 39:721734 Google Scholar
Sullivan, D (2011) DuPont Label Says “Do Not Compost” Grass Clippings. Biocycle 52(6):23 http://www.biocycle.net/2011/06/dupont-label-says-do-not-compost-grass-clippings/. Accessed December 14, 2012Google Scholar
[USDA-NRCS] U.S. Department of Agriculture, National Resources Conservation Service (2012) Official soil series descriptions. https://soilseries.sc.egov.usda.gov/osdname.asp. Accessed December 7, 2012Google Scholar
Watt, MS, Whitehead, D, Mason, EG, Richardson, B, and Kimberly, MO (2003) The influence of weed competition for light and water on growth and dry matter partitioning of young Pinus radiata, at a dryland site. For Ecol Manage 183:363376 CrossRefGoogle Scholar