Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T06:34:06.304Z Has data issue: false hasContentIssue false

Technology for Automation of Weed Control in Specialty Crops

Published online by Cambridge University Press:  23 February 2017

Steven A. Fennimore*
Affiliation:
Department of Plant Sciences, University of California, Davis, Salinas, CA 93905
David C. Slaughter
Affiliation:
Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA 95616
Mark C. Siemens
Affiliation:
Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, AZ 85721
Ramon G. Leon
Affiliation:
West Florida Research and Education Center and Agronomy Department, University of Florida, Jay, FL 32565
Mazin N. Saber
Affiliation:
University of Arizona, Yuma Agricultural Center, AZ 85364
*
Corresponding author's E-mail: safennimore@ucdavis.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Specialty crops, like flowers, herbs, and vegetables, generally do not have an adequate spectrum of herbicide chemistries to control weeds and have been dependent on hand weeding to achieve commercially acceptable weed control. However, labor shortages have led to higher costs for hand weeding. There is a need to develop labor-saving technologies for weed control in specialty crops if production costs are to be contained. Machine vision technology, together with data processors, have been developed to enable commercial machines to recognize crop row patterns and control automated devices that perform tasks such as removal of intrarow weeds, as well as to thin crops to desired stands. The commercial machine vision systems depend upon a size difference between the crops and weeds and/or the regular crop row pattern to enable the system to recognize crop plants and control surrounding weeds. However, where weeds are large or the weed population is very dense, then current machine vision systems cannot effectively differentiate weeds from crops. Commercially available automated weeders and thinners today depend upon cultivators or directed sprayers to control weeds. Weed control actuators on future models may use abrasion with sand blown in an air stream or heating with flaming devices to kill weeds. Future weed control strategies will likely require adaptation of the crops to automated weed removal equipment. One example would be changes in crop row patterns and spacing to facilitate cultivation in two directions. Chemical company consolidation continues to reduce the number of companies searching for new herbicides; increasing costs to develop new herbicides and price competition from existing products suggest that the downward trend in new herbicide development will continue. In contrast, automated weed removal equipment continues to improve and become more effective.

Los cultivos hortícolas de alto valor tales como flores, hierbas, y vegetales generalmente no tienen un espectro adecuado de químicos herbicidas para el control de malezas y han sido dependientes de la deshierba manual para alcanzar un control de malezas comercialmente aceptable. Sin embargo, la escasez de mano de obra ha provocado el incremento en los costos de la deshierba manual. Si se pretende contener los costos de producción, existe una necesidad de desarrollar tecnologías alternativas a la mano de obra para el control de malezas en cultivos hortícolas de alto valor. La tecnología de máquinas de visión, combinada con procesadores de datos, ha sido desarrollada para hacer posible que máquinas comerciales puedan reconocer los patrones de siembra en hileras del cultivo y a la vez controlar equipos automatizados que pueden desempeñar labores tales como la remoción de malezas en la hilera de siembra, o ralear la densidad de siembra del cultivo. Los sistemas de máquinas de visión comerciales dependen de la diferencia entre el tamaño del cultivo y el de las malezas y/o de la regularidad del patrón de distribución del cultivo para que el sistema pueda reconocer las plantas del cultivo y las malezas a su alrededor. Sin embargo, donde las malezas son grandes o la población de malezas es muy densa, los sistemas de máquinas de visión actuales no pueden diferenciar efectivamente entre las malezas y los cultivos. Los equipos automatizados de deshierba disponibles comercialmente hoy en día dependen de cultivadores o aspersores dirigidos para controlar malezas. Los equipos de acción para el control de malezas en modelos futuros podrían usar abrasión con aspersión de arena con aire a presión o calor con equipos con llamas de fuego para matar las malezas. Las estrategias de control de malezas en el futuro probablemente requerirán la adaptación de los cultivos al equipo automatizado de remoción de malezas. Un ejemplo de esto sería el cambio de patrones de siembra y distancias entre hileras del cultivo para facilitar la labranza en dos direcciones. La consolidación de compañías químicas continúa reduciendo el número de compañías que están buscando nuevos herbicidas. Además, el incremento en los costos de desarrollar nuevos herbicidas y el precio de la competencia a partir de productos existentes sugiere que la tendencia decreciente en el desarrollo de nuevos herbicidas continuará. En contraste, equipos automatizados de remoción de malezas continúan mejorando y haciéndose más efectivos.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Weed Science Society of America

Footnotes

Associate editor for this paper: Robert Nurse, Agriculture and Agri-Food Canada.

References

Literature Cited

Araus, JL, Slafer, GA, Reynolds, MP, Royo, C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89: 925940 Google Scholar
Åstrand, B, Baerveldt, A (2002) An agricultural mobile robot with vision-based perception for mechanical weed control. Auton Robots 13: 2135 Google Scholar
Åstrand, B, Baerveldt, AJ (2005) Plant recognition and localization using context information and individual plant features. Paper IV in Vision Based Perception for Mechatronic Weed Control.Google Scholar
Åstrand, B. PhD thesis. Chalmers University of Technology. Göteborg, Sweden. fou.sjv.se/fou/download.lasso?id=Fil-000788. Accessed on April 19, 2016Google Scholar
Boyd, NB, Brennan, EB, Fennimore, SA (2006) Stale seedbed techniques for organic vegetable production. Weed Technol 20: 10521057 Google Scholar
Boyd, NS, Brennan, EB, Smith, RF, Yokota, R (2009) Effect of seeding rate and planting arrangement on rye cover crop and weed growth. Agron J 101: 4751 Google Scholar
Castello, O, Gerwick, C, Johnson, T, LePlae, PR Jr, Lo, W, Roth, JJ (2015) Herbicide discovery: the search for new modes of action. Proc Calif Weed Sci Soc. http://www.cwss.org/uploaded/media_pdf/947–1C_Roth_CWSS2015_Herbicide%20Discovery.pdf. Accessed April 19, 2016Google Scholar
Chu, Q, Liu, J, Bali, K, Thorp, KR, Smith, R, Wang, G (2016) Automated thinning increases uniformity of in-row spacing and plant size in romaine lettuce. HortTechnology 26: 1219 Google Scholar
Cloutier, DC, van der Weide, RY, Peruzzi, A, LeBlanc, ML (2007) Mechanical weed management. Pages 111134 in Upadhyaya, MK, Blackshaw, RE, eds. Non-Chemical Weed Management. Oxfordshire, UK: CAB International Google Scholar
Connor, DJ, Gómez-del-Campo, M, Rousseaux, MC, Searles, PS (2014) Structure, management and productivity of hedgerow olive orchards: a review. Sci Hortic 169: 7193 Google Scholar
De Baerdemaeker, J (2014) Future adoption of automation in weed control. Chapter 13 in Young, SL, Pierce, FJ, eds. Automation: The Future of Weed Control in Cropping Systems. Dordrecht, The Netherlands: Springer Science + Business Media Google Scholar
Duke, SO (2012) Why have no new herbicide modes of action appeared in recent years? Pest Manag Sci 68: 505512 Google Scholar
Ehsani, MR, Upadhyaya, SK, Mattson, ML (2004) Seed location mapping using RTK GPS. Trans ASAE 47: 909914 Google Scholar
Fennimore, SA, Doohan, DJ (2008) The challenges of specialty crop weed control, future directions. Weed Technol 22: 364372 Google Scholar
Fennimore, SA, Smith, RF, Tourte, L, LeStrange, M, Rachuy, JS (2014) Evaluation and economics of a rotating cultivator in bok choy, celery, lettuce, and radicchio. Weed Technol 28: 176188 Google Scholar
Fennimore, SA, Tourte, LJ, Rachuy, JS, Smith, RF, George, CA (2010) Evaluation and economics of a machine-vision guided cultivation program in broccoli and lettuce. Weed Technol 24: 3338 Google Scholar
Forcella, F (2009) Potential of air-propelled abrasives for selective weed control. Weed Technol 23: 317320 Google Scholar
Forcella, F (2012) Air-propelled abrasive grit for postemergence in-row weed control in field corn. Weed Technol 26: 161164 Google Scholar
Forcella, F (2013) Soybean seedlings tolerate abrasion from air-propelled grit. Weed Technol 27: 631635 Google Scholar
Garrett, RE, Talley, WK (1969) Use of gamma ray transmission in selecting lettuce for harvest, Paper No. 69-310, The 1969 Annual Meeting of the American Society of Agricultural Engineers.Google Scholar
Gianessi, LP, Reigner, NP (2007) The value of herbicides in U.S. crop production. Weed Technol 21: 559566 Google Scholar
Haar, MJ, Fennimore, SA (2003) Evaluation of integrated practices for common purslane management in lettuce. Weed Technol 17: 229233 Google Scholar
Haar, MJ, Fennimore, SA, Lambert, CL (2001) Economics of pronamide and pendimethalin use in artichoke during stand establishment. HortScience 36: 650653 Google Scholar
Haff, RP, Slaughter, DC, Jackson, ES (2011) X-ray based stem detection in an automatic tomato weeding system. Appl Eng Agric 27: 803810 Google Scholar
Have, H, Jon Nielsen, J, Blackmore, S, Theilby, F (2005) Autonomous Weeder for Christmas Trees —Basic Development and Tests. Pesticides Research No. 97 2005 Bekæmpelsesm iddelforskning fra Miljøstyrelsen. Danish Environmental Protection Agency. http://www.unibots.com/Papers/87-7614-869-6.pdf. Accessed April 28, 2016. 77 ppGoogle Scholar
Hearn, DJ (2009) Shape analysis for the automated identification of plants from images of leaves. Taxon 58: 934954 Google Scholar
Hemming, J, Nieuwenhuizen, AT, Struik, LE (2011) Image analysis system to determine crop row and plant positions for an intra-row weeding machine. Tokyo, Japan: Proceedings of the CIGR International Symposium on Sustainable Bioproduction. Pp 17 Google Scholar
Jeschke, P (2016) Progress of modern agricultural chemistry and future prospects. Pest Manage Sci 72: 433455 Google Scholar
Kaierle, S, Marx, C, Rath, T, Hustedt, M (2013) Find and irradiate—lasers used for weed control. Laser Tech J 10: 4447 Google Scholar
Knezevic, S, Fennimore, S, Datta, A (in press) Thermal weed control. in Encyclopedia of Applied Plant Sciences. 2nd edn. http://dx.doi.org/10.1016/B978-0-12-394807-6.00235-5 Google Scholar
Kraehmer, H, Laber, B, Rosinger, C, Schulz, A (2014) Herbicides as weed control agents: state of the art: I. Weed control research and safener technology: the path to modern agriculture. Plant Physiol 166: 11191131 Google Scholar
Kurstjens, DAG, Kropff, MJ, Perdok, UD (2004) Method for predicting selective uprooting by mechanical weeders from plant anchorage forces. Weed Sci 52: 123132 Google Scholar
Lamberth, C, Jeanmart, S, Luksch, , Plant, A (2013) Current challenges and trends in the discovery of agrochemicals. Science 341: 742746 Google Scholar
Lamm, RD, Slaughter, DC, Giles, DK (2002) Precision weed control system for cotton. Trans ASAE 45: 231238 Google Scholar
Lanini, WT, LeStrange, M (1991) Low-input management of weeds in vegetable fields. Calif Agric 45: 1113 Google Scholar
Lati, RN, Siemens, MC, Rachuy, JS, Fennimore, SA (2016) Intra-row weed removal in broccoli and transplanted lettuce with an intelligent cultivator. Weed Technol 30: 655663 Google Scholar
Lee, WS, Slaughter, DC, Giles, DK (1999) Robotic weed control system for tomatoes. Precis Agric 1: 95113 Google Scholar
Lenker, DH, Adrian, PA (1971) Use of x-rays for selecting mature lettuce heads. Trans ASAE 14: 894898 Google Scholar
Leon, RG, Tillman, BL (2015) Postemergence herbicide tolerance variation in peanut germplasm. Weed Sci 63: 546554 Google Scholar
Manh, AG, Rabatel, G, Assemat, L, Aldon, MJ (2001) Weed leaf image segmentation by deformable templates. J Agric Eng Res 80: 139146 Google Scholar
Mathiassen, SK, Bak, T, Christensen, S, Kudsk, P (2006) The effect of laser treatment as a weed control method. Biosyst Eng 95: 497505 Google Scholar
Maw, BW, Suggs, CW (1984) A seedling taping machine for bare root plants. Trans ASAE 27: 711714 Google Scholar
Melander, B, Lattanzi, B, Pannaci, E (2105) Intelligent versus nonintelligent mechanical intra-row weed control in transplanted onion and cabbage. Crop Prot 72: 18 Google Scholar
Melita, CD, Muscato, G, Poncelet, M (2013) A simulation environment for an augmented global navigation satellite system assisted autonomous robotic lawn-mower. J Intell Robot Syst 71: 127142 Google Scholar
Michaels, A, Haug, S, Albert, A (2015) Vision-based high-speed manipulation for robotic ultra-precise weed control. Pages 54985505 in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference.Google Scholar
Midtiby, HS, Mathiassen, SK, Andersson, KJ Jørgensen, RN (2011) Performance evaluation of a crop/weed discriminating microsprayer. Comput Electron Agric 77: 3540 Google Scholar
Mohler, CL (2001) Mechanical management of weeds. Pages 139209 in Liebman, M, Mohler, CL, Staver, CP, eds. Ecological management of agricultural weeds. Cambridge, United Kingdom: Cambridge University Press Google Scholar
Nibau, C, Gibbs, DJ, Coates, JC (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179: 595614 Google Scholar
Nieuwenhuizen, AT, Hofstee, JW, van Henten, EJ (2010) Performance evaluation of an automated detection and control system for volunteer potatoes in sugar fields. Biosyst Eng 107: 4653 Google Scholar
Nørremark, M, Griepentrog, HW, Nielsen, J, Søgaard, HT (2008) The development and assessment of the accuracy of an autonomous GPS-based system for intra-row mechanical weed control in row crops. Biosyst Eng 101: 396410 Google Scholar
Nørremark, M, Søgaard, HT, Griepentrog, HW, Nielsen, H (2007) Instrumentation and method for high accuracy georeferencing of sugar beet plants. Comput Electron Agric 56: 130146 Google Scholar
Nørremark, M, Swain, KS, Melander, B (2009) Advanced non-chemical and close to plant weed control system for organic agriculture. In International Agricultural Engineering Conference, Bangkok.Google Scholar
O’Dogherty, MJ, Godwin, RJ, Dedousis, AP, Brighton, LJ, Tillett, ND (2007) A mathematical model of the kinematics of a rotating disc for inter- and intra-row hoeing. Biosyst Eng 96: 169179 Google Scholar
Onyango, CM, Marchant, JA (2003) Segmentation of row crop plants from weeds using colour and morphology. Comput Electron Agric 39: 141155 Google Scholar
Pérez-Ruiz, M, Slaughter, DC, Gliever, CJ, Upadhyaya, SK (2012a) Automatic GPS-based intra-row weed knife control system for transplanted row crops. Comput Electron Agric 80: 4149 Google Scholar
Pérez-Ruiz, M, Slaughter, DC, Gliever, C, Upadhyaya, SK (2012b) Tractor-based real-time kinematic–global positioning system (RTK-GPS) guidance system for geospatial mapping of row crop transplant. Biosyst Eng 111: 6471 Google Scholar
Persson, M, Åstrand, B (2008) Classification of crops and weeds extracted by active shape models. Biosyst Eng 100: 484497. DOI: 10.1016/j.biosystemseng.2008.05.003Google Scholar
Pleasant, JM, Burt, RF, Frisch, JC (1994) Integrating mechanical and chemical weed management in corn (Zea mays). Weed Technol 8: 217223 Google Scholar
Poulsen, F. (2011) System for selective treatment of plants in a row. U.S. patent 8,027,770 B2Google Scholar
Rask, AM, Kristoffersen, P (2007) A review of non-chemical weed control on hard surfaces. Weed Res 47: 370380 Google Scholar
Rüegg, WT, Quadranti, M, Zoschke, A (2007) Herbicide research and development: challenges and opportunities. Weed Res 47: 271275 Google Scholar
Scarlett, AJ (2001) Integrated control of agricultural tractors and implements: a review of potential opportunities relating to cultivation and crop establishment machinery. Comput Electron Agric 30: 167191 Google Scholar
Shaner, DL (2000) The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manage Sci 56: 320326 Google Scholar
Siemens, MC (2014) Robotic weed control. Pages 7680 in Proceedings of the California Weed Science Society. Vol. 66. Salinas, CA: California Weed Science Society.Google Scholar
Siemens, MC, Herbon, R, Gayler, RR, Nolte, KD, Brooks, D (2012) Automated machine for thinning lettuce—evaluation and development. ASABE paper No. 12-1338169. St. Joseph, MI: ASABE. P 14 Google Scholar
Slaughter, DC, Chen, P, Curley, RG (1999) Vision guided precision cultivation. Precis Agric 1: 199216 Google Scholar
Slaughter, DC, Giles, DK, Fennimore, SA, Smith, RF (2008) Multispectral machine vision identification of lettuce and weed seedlings for automated weed control. Weed Technol 22: 378384 Google Scholar
Smith, R, Mosqueda, E, Shrestha, A, Galva, F (2014) Evaluation of automated lettuce thinners. Salinas Valley Agriculture–ANR Blogs. Davis, CA: University of California, Davis. http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=15932. Accessed April 28, 2016Google Scholar
Søgaard, HT (2005) Weed classification by active shape models. Biosyst Eng 91: 271281 Google Scholar
Søgaard, HT, Lund, I (2007) Application accuracy of a machine vision-controlled robotic micro-dosing system. Biosyst Eng 96: 315322 Google Scholar
Søgaard, HT, Lund, I, Graglia, E (2006) Real-time application of herbicides in seed lines by computer vision and micro-spray system. ASABE paper No. 06-1118, pp. 9. St. Joseph, MI: ASABE Google Scholar
Southall, B, Hague, T, Marchant, JA, Buxton, BF (2002) An autonomous crop treatment robot: Part I. A Kalman filter model for localization and crop/weed classification. Int J Robot Res 21: 6174 Google Scholar
Sun, H, Slaughter, DC, Perez-Ruiz, M, Gliever, C, Upadhyaya, SK, Smith, RF (2010) RTK GPS mapping of transplanted row crops. Comput Electron Agric 71: 3237 Google Scholar
Taylor, JE, Charlton, D, Yunez-Naude, A (2012) The end of farm labor abundance. Appl Econ Perspect Policy 34: 587598 Google Scholar
Teasdale, JR, Frank, JR (1983) Effect of row spacing on weed competition with snap beans (Phaseolus vulgaris). Weed Sci 31: 8185 Google Scholar
Tillet, ND, Hague, T, Grundy, AC, Dedousis, AP (2008) Mechanical within-row weed control for transplanted crops using computer vision. Biosyst Eng 99: 171178 Google Scholar
Tillett, ND, Hague, T, Miles, SJ (2001) A field assessment of a potential method for weed and crop mapping on the basis of crop planting geometry. Comput Electron Agric 32: 229246 Google Scholar
Upadhyaya, SK, Ehsani, M, Mattson, ML (2003) Method and apparatus for ultra precise GPS-based mapping of seeds or vegetation during planting. U.S. Patent 6,553,312Google Scholar
Upadhyaya, SK, Ehsani, M, Mattson, ML (2005) Method and apparatus for ultra precise GPS-based mapping of seeds or vegetation during planting. U.S. patent 6941225Google Scholar
[USDA] U.S. Department of Agriculture (2016) What is a Specialty Crop? https://www.ams.usda.gov/services/grants/scbgp/specialty-crop. Accessed April 28, 2016Google Scholar
[USEPA] U.S. Environmental Protection Agency (2015) Pesticide Registration Manual: Chapter 13—Devices. http://www.epa.gov/pesticide-registration/pesticide-registration-manual-chapter-13-devices. Accessed January 23, 2016Google Scholar
[USGS] U.S. Geological Survey (2016) Global Positioning Application and Practice. http://water.usgs.gov/osw/gps/. Accessed March 25, 2016Google Scholar
van der Schans, D, Bleeker, P, Molendijk, L, Plentinger, M, van der Weide, R, Lotz, B, Bauermeister, R, Total, R, Baumann, DT (2006) Practical Weed Control in Arable Farming and Outdoor Vegetable Cultivation without Chemicals. PPO Publication 532. Applied Plant Research, Wageningen University, Lelystad, the Netherlands. 77 ppGoogle Scholar
Vangessel, MJ, Schweizer, EE, Wilson, RG, Wiles, LJ, Westra, P (1998) Impact of timing and frequency of in-row cultivation for weed control in dry bean (Phaseolus vulgaris). Weed Technol 12: 548553 Google Scholar
Wagenmakers, PS, Wertheim, SJ (1991) Planting systems for fruit trees in temperate climates. Circ Rev Plant Sci 10: 369385 Google Scholar
Wortman, S (2014) Integrating weed and vegetable crop management with multifunctional air-propelled abrasive grits. Weed Technol 28: 243252 Google Scholar
Wortman, S (2015) Air-propelled abrasive grits reduce weed abundance and increase yields in organic vegetable production. Crop Prot 77: 157162 Google Scholar
Zhang, Y, Slaughter, DC (2011) Hyperspectral species mapping for automatic weed control in tomato under thermal environmental stress. Comput Electron Agric 77: 95104. DOI: 10.1016/j.compag.2011.04.001Google Scholar
Zhang, Y, Slaughter, DC, Staab, ES (2012a) Robust hyperspectral vision-based classification for multi-season weed mapping. J Photogramm Remote Sens 69: 6573. DOI: 10.1016/j.isprsjprs.2012.02.006Google Scholar
Zhang, Y, Staab, ES, Slaughter, DC, Giles, DK, Downey, D (2012b) Automated weed control in organic row crops using hyperspectral species identification and thermal micro-dosing. Crop Prot 41: 96105 Google Scholar