Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T05:22:27.595Z Has data issue: false hasContentIssue false

Texasweed (Caperonia palustris) Can Survive and Reproduce in 30-cm Flood

Published online by Cambridge University Press:  20 January 2017

Rakesh K. Godara*
Affiliation:
School of Plant Soil and Environmental Sciences, Louisiana State University and A&M College, Baton Rouge, LA 70803
Billy J. Williams
Affiliation:
Scott Research/Extension Center, 212-B Macon Ridge Road, Winnsboro, LA 71295
Eric P. Webster
Affiliation:
School of Plant Soil and Environmental Sciences, Louisiana State University and A&M College, Baton Rouge, LA 70803
*
Corresponding author's E-mail: rkgodara@gmail.com

Abstract

Texasweed is an annual broadleaf plant belonging to the Euphorbiaceae family and is an emerging problem in southern U.S. rice fields. Field studies were conducted in 2008 and 2009 to study the effect of flood depth on Texasweed survival and growth. The trearments were five flood depths: 0, 10, 15, 20, and 30 cm and two Texasweed growth stages: two- to three-leaf stage and four- to five-leaf stage. The experiment was conducted in a completely randomized split-plot design with three replications. Flooding conditions were created by placing potted plants in 1.3 m by 0.7 m by 0.7 m polyvinyl chloride troughs. The effect of flood depth on Texasweed growth and fruit production was evaluated using ANOVA and regression analysis. Texasweed plants were able to survive in floods up to 30 cm; however, growth and fruit production were reduced. Increasing flood depths resulted in increased plant height and greater biomass allocation to stem. Texasweed plants produced adventitious roots and a thick spongy tissue, secondary aerenchyma, in the submerged roots and stem, which may play a role in its survival under flooded conditions. The recommended flood depth for rice in Louisiana is 5 to 10 cm. A 10-cm flood in the present study caused about 30 and 15% biomass reduction in two- to three-leaf and four- to five-leaf stage Texasweed, respectively. The results, thus, suggest that flooding alone may not be a viable option for Texasweed management in drill-seeded rice. However, appropriate manipulation of flooding could enhance the effectiveness of POST herbicides. This aspect needs further investigation.

La Caperonia palustris es una planta anual de hoja ancha perteneciente a la familia Euphorbiaceae y es un problema emergente en los arrozales del sur de los Estados Unidos. Para estudiar el efecto de la inundación profunda en la supervivencia y el crecimiento de C. palustris, se realizaron estudios de campo en 2008 y 2009. Los tratamientos se hicieron a cinco profundidades de inundación: 0, 10, 15, 20 y 30 cm, y en dos etapas de crecimiento: dos a tres hojas y cuatro a cinco hojas. El experimento se realizó utilizando un diseño de parcela dividida, completamente al azar con tres réplicas. Las condiciones de inundación fueron creadas colocando plantas en macetas en canaletas de PVC de 1.3 m × 0.7 m × 0.7 m. El efecto de la profundidad de inundación en el crecimiento y la producción de frutos de C. palustris fue evaluada usando ANOVA y un análisis de regresión. Las plantas de C. palustris sobrevivieron en inundaciones de hasta 30 cm; sin embargo, el crecimiento y la producción del fruto se redujeron. Al incrementar las profundidades de inundación se incrementó también la altura de la planta y la localización de la biomasa hacia el tallo. Las plantas de C. palustris produjeron raíces adventicias y un tejido esponjoso grueso (aerénquima secundario) en las raíces y tallos sumergidos, los cuales podrían contribuir a su supervivencia bajo condiciones de inundación. La profundidad de inundación recomendada para el arroz en Luisiana es de 5 a 10 cm. Una inundación de 10 cm en el presente estudio causó aproximadamente 30 y 15% de reducción de la biomasa en las etapas de dos a tres y de cuatro a cinco hojas de la maleza, respectivamente. Por lo tanto, los resultados sugieren que la inundación por sí sola puede no ser una opción viable para el manejo de C. palustris en el arroz. Sin embargo, una manipulación apropiada de la inundación podría mejorar la eficacia de los herbicidas posemergentes. Este aspecto requiere más investigación.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: P.O. Box 438, Northeast Research Station, Saint Joseph, LA 71366.

References

Literature Cited

Anonymous. 2007. ZipcodeZoo.com. BayScience Foundation, Inc. http://zipcodezoo.com/default.asp Accessed: March 15, 2007.Google Scholar
Avila, L. A., Senseman, S. A., McCauley, G. N., Chandler, J. M., and O'Barr, J. H. 2005. Effect of flood timing on red rice (Oryza spp.) control with imazethapyr applied at different dry-seeded rice growth stages. Weed Technol. 19:476480.Google Scholar
Bennett, D. 2003. Mexican/Texas weed spreading. Delta Farm Press: Prism Business Media. http://deltafarmpress.com/mag/farming_mexicantexas_weed_spreading/index.html. Accessed: October 15, 2010.Google Scholar
Benvenuti, S., Dinelli, G., and Bonetti, A. 2004. Germination ecology of Leptochloa chinensis: a new weed in the Italian rice agroenvironment. Weed Res. 44:8796.Google Scholar
Blanche, B., Harrell, D., and Saichuk, J. 2009. General agronomic guidelines. In Siachuk, J., ed. Louisiana Rice Production Handbook. Baton Rouge, LA Louisiana State University Agricultural Center. Pub. 2321. 9 p.Google Scholar
Bollich, P. K., Siachuk, J. K., and Funderburg, E. R. 2009. Soil, plant nutrition and fertilization. In Siachuk, J., ed. Louisiana Rice Production Handbook. Baton Rouge, LA Louisiana State University Agricultural Center. Pub. 2321. Pages 2335.Google Scholar
Bottoms, S. L. 2009. Integrated Management of Creeping Rivergrass in Rice. Ph.D Dissertation. Baton Rouge, LA Louisiana State University. Pp. 2324.Google Scholar
Bouman, B. A. M., Lampayan, R. M., and Tuong, T. P. 2007. Water Management in Irrigated Rice: Coping with Water Scarcity. Los Banos (Philippines) International Rice Research Institute. Pp. 5455.Google Scholar
Bryson, C. T. and DeFelice, M. S., eds. 2009. Weeds of the South. Athens, GA University of Georgia Press. 185 p.Google Scholar
Caton, B. P., Foin, T. C., and Hill, J. E. 1997. Phenotypic plasticity of Ammannia spp. in competition with rice. Weed Res. 37:3338.Google Scholar
Gann, G. D., Bradley, K. A., and Woodmansee, S. W. 2007. The floristic inventory of south Florida database online. Miami, FL The Institute for Regional Conservation, http://regionalconservation.org/ircs/database/plants/SFPlantListByL.asp Accessed: October 15, 2010.Google Scholar
Gealy, D. 1998. Differential response of palmleaf morningglory (Ipomoea wrightii) and pitted morningglory (Ipomoea lacunosa) to flooding. Weed Sci. 46:217224.Google Scholar
Gianessi, L. P., Silvers, C. S., Sankula, S., and Carpenter, J. E. 2002. Plant biotechnology: current and potential impact for improving pest management in U.S. agriculture—An analysis of 40 case studies. Washington, DC National Center for Food and Agricultural Policy. 8 p. http://www.ncfap.org/documents/RiceHT.pdf. Accessed: October 15, 2010.Google Scholar
Godfrey, R. K. and Wooten, J. W. 1981. Aquatic and Wetland Plants of Southeastern United States: Dicotyledons. Athens, GA University of Georgia Press. Pp. 281282.Google Scholar
Hirase, K. and Molin, W. T. 2002. Effect of submergence and naproanilide application on the growth of hemp sesbania and rice. Weed Biol. Manag. 2:116119.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herbenger, J. P. 1977. The world's worst weeds: distribution and biology. Honolulu, HI University of Hawaii Press. 32 p.Google Scholar
Koger, C. H., Reddy, K. N., and Poston, D. H. 2004. Factors affecting seed germination, seedling emergence, and survival of Texasweed (Caperonia palustris). Weed Sci. 52:989995.Google Scholar
Kurtz, M. 2004. Texasweed best controlled at one to three leaf stage. Web resource: Mississippi State University, Delta Research and Extension Center, Stoneville, MS. http://www.msstate.edu/dept/drec/rice/rice_research_updates/fall_2005/texasweed_best_controlled_at_kurtz_rice_print.htm. Accessed: October 15, 2010.Google Scholar
Masson, J. A., Webster, E. P., and Williams, B. J. 2001. Flood depth, application timing, and imazethapyr activity in imidazolinone-tolerant rice (Oryza sativa). Weed Technol. 15:315319.Google Scholar
Mortimer, A. M. and Hill, J. E. 1999. Weed species shifts in response to broad-spectrum herbicides in subtropical and tropical crops. Proc. Brighton Crop Protect. Conf. 2:425437.Google Scholar
Poston, D. H., Nandula, V. K., Griffin, R. M., and Koger, C. H. 2007. Texasweed (Caperonia palustris) control in soybean with postemergence herbicides. Weed Technol. 21:670673.Google Scholar
Sahid, I. B. and Hossain, M. S. 1995. The effects of flooding and sowing depth on the survival and growth of five rice-weed species. Plant Prot. Q. 10:139142.Google Scholar
Saraswati, R., Matoh, T., and Sekiya, J. 1992. Nitrogen fixation of Sesbania rostrata: contribution of stem nodules to nitrogen acquisition. Soil Sci. Plant Nutr. 38:775780.Google Scholar
SAS Institute Inc. 2003. SAS/STAT ® Software Version 9.1.3. Cary, NC SAS Institute.Google Scholar
SAS Institute Inc. 2009. SAS/STAT ® 9.2 User's Guide. 2nd ed. Cary, NC SAS Institute. Pp. 6667.Google Scholar
Saxton, A. M. 1998. A macro for converting mean separation output to letter groupings in Proc. Mixed. Pages 12431246 in Proceedings of the 23rd SAS Users Group International. Nashville, TN SAS Institute, Cary, NC.Google Scholar
Seaman, D. E. 1983. Farmers' weed control technology for water-seeded rice in North America Pages 167176 in Proceedings of the 1981 Conference on Weed Control in Rice. Los Banos, Philippines International Rice Research Institute.Google Scholar
Shiba, H. and Daimon, H. 2003. Histological observation of secondary aerenchyma formed immediately after flooding in Sesbania cannabina and S. rostrata . Plant Soil 255:209215.Google Scholar
Shimamura, S., Mochizuki, T., Nada, Y., and Fukuyama, M. 2003. Formation and function of secondary aerenchyma in hypocotyl, root and nodules of soybean (Glycine max) under flooded conditions. Plant Soil 251:351359.Google Scholar
Smith, R. J. Jr. 1984. Competition of spreading dayflower (Commelina diffusa) with rice (Oryza sativa). Weed Sci. 32:116119.Google Scholar
Smith, R. J. Jr. and Fox, W. T. 1973. Soil water and growth of rice and weeds. Weed Sci. 21:6163.Google Scholar
Stevens, K. J., Peterson, L., and Reader, R. J. 2002. The aerenchymatous phellem of Lythrum salicaria (L): a pathway for gas transport and its role in flood tolerance. Ann. Bot. 89:621625.Google Scholar
Stoecker, M. A., Smith, M., and Melton, E. D. 1995. Survival and aerenchyma development under flooded conditions of Boltonia decurrens, a threatened floodplain species and Conyza canadensis, a widely distributed competitor. Am. Mid. Nat. 134:117126.Google Scholar
Thomas, A. L., Guerreiro, S. M. C., and Sodek, L. 2005. Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann. Bot. 96:11911198.Google Scholar
[USDA] U.S. Department of Agriculture. 2007. The PLANTS Database. National Plant Data Center, Baton Rouge, LA, USA. http://plants.usda.gov. Accessed: October 15, 2010.Google Scholar
Valverde, B. E., Carmiol, J., Riches, C. R., Caseley, J. C., Vargas, E., Chaves, L., Garita, I., and Ramirez, F. 2001. Modified herbicide regimes for propanil-resistant junglerice control in rain-fed rice. Weed Sci. 49:395405.Google Scholar
Vartapetian, B. B. and Jackson, M. B. 1997. Plant adaptations to anaerobic stress. Ann. Bot. 79:320.Google Scholar
Webster, T. M. 2004. The southern states 10 most common and troublesome weeds in rice. Proc. South. Weed Sci. Soc. 57:416.Google Scholar
Williams, B. J., Webster, E. P., and Strahan, R. 2001. Advances in rice weed control technology. Louisiana Agr. 44:46.Google Scholar
Williams, J. F., Roberts, S. R., Hill, J. E., Scardaci, S. C., and Tibbits, G. 1990. Managing water for weed control in rice. Calif. Agr. 44:710.Google Scholar
Yu, L., Fujii, Y., Zhou, Y., Zhang, J., Lu, Y., and Xuan, S. 2007. Response of exotic invasive weed Alternanthera philoxeroides to environmental factors and its competition with rice. Rice Sci. 14:4955.Google Scholar
Zhang, J. X., Li, C. H., Lou, Y. L., Deng, Y. Y., and Qiu, C. Y. 2004. Studies on the transplanting rice yield loss caused by weed Alternanthera philoxeroides and its economic threshold. Acta Agric. Shanghai 20:9598.Google Scholar