Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T07:25:24.739Z Has data issue: false hasContentIssue false

Thioproline Protection of Crops Against Herbicide Toxicity

Published online by Cambridge University Press:  12 June 2017

James L. Hilton
Affiliation:
Agric. Res. Serv., U.S. Dep. Agric., Beltsville, MD 20705
Parthasarathy Pillai
Affiliation:
Agric. Res. Serv., U.S. Dep. Agric., Beltsville, MD 20705

Abstract

Thioproline (L-thiazolidine-4-carboxylic acid) partially protects sorghum [Sorghum bicolor (L.) Moench. ‘DK 42Y’] seedlings against the herbicides tridiphane [2-(3,5-dichlorophenyl)-2-(2,2,2-trichloroethyl)oxirane] and alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide] in controlled environment chambers. Thioproline alone inhibits plant growth at concentrations above 10−5 M. Its phytotoxicity is intermediate between the two herbicide antidotes OTC (L-2-oxothiazolidine-4-carboxylic acid) and flurazole [phenylmethyl 2-chloro-4-(trifluoromethyl)-5-thiazolecarboxylate]. The two thiazolidine antidotes increased thiol content of excised corn (Zea mays L. ‘DK T 1100’) seedling roots whereas thiol content was decreased by the two herbicides. While thioproline or OTC partially offset tridiphane-induced decreases in thiol content, none of the antidotes effectively circumvented the reduced thiol content resulting from alachlor treatment.

Type
Research
Copyright
Copyright © 1988 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Brinker, R., Schafer, D., Radke, R., Boeken, G., and Frazier, H. 1982. The effectiveness of MON-4606 as seed safener against alachlor and acetochlor in grain sorghum. Proc. Br. Crop Prot. Conf.-Weeds 2:469.Google Scholar
2. Hilton, J. L., and Pillai, P. 1986. L-2-oxothiazolidine-4-carboxylic acid protection against tridiphane toxicity. Weed Sci. 34:669675.CrossRefGoogle Scholar
3. Lamoureux, G. L., and Rusness, D. G. 1986. Xenobiotic conjugation in higher plants. Pages 62105 in Paulson, G. D., Caldwell, J., Hutson, D. H., and Menu, J. J. (eds). Xenobiotic Conjugation Chemistry. ACS Symposium Series. No. 299. Am. Chem. Soc., Washington, DC.CrossRefGoogle Scholar
4. Lay, M. M., and Casida, J. F. 1976. Dichloroacetamide antidotes enhance thiocarbamate sulfoxide detoxication by elevating corn root glutathione S-transferase activity. Pestic. Biochem. Physiol. 6:442456.CrossRefGoogle Scholar
5. Mackenzie, C. G. 1962. Thiazolidine carboxylate dehydrogenase. Pages 736738 in Colowick, S. P., and Kaplan, N. O. (eds). Methods in Enzymology. Vol. 5. Academic Press, New York CrossRefGoogle Scholar
6. Williamson, J. M., and Meister, A. 1981. Stimulation of hepatic glutathione formation by administration of L-2-oxothiazolidine-4-carboxylate, a 5-oxo-L-prolinase substrate. Proc. Natl. Acad. Sci. U.S.A. 78:936939.CrossRefGoogle ScholarPubMed
7. Williamson, J. M., and Meister, A. 1982. New substrates of 5-oxo-L-prolinase. J. Biol. Chem. 257:1203912042.CrossRefGoogle ScholarPubMed
8. Williamson, J. M., Boettcher, B., and Meister, A. 1982. Intracellular cysteine delivery system that protects against toxicity by promoting glutathione synthesis. Proc. Natl. Acad. Sci. U.S.A. 79:62466249.CrossRefGoogle ScholarPubMed