Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T23:18:14.143Z Has data issue: false hasContentIssue false

Tolerance Evaluation of Vegetatively Established Miscanthus × giganteus to Herbicides

Published online by Cambridge University Press:  20 January 2017

Xiao Li*
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Athens GA 30602
Timothy L. Grey
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton GA 31793
Brian H. Blanchett
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton GA 31793
R. Dewey Lee
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton GA 31793
Theodore M. Webster
Affiliation:
Crop Protection and Management Research Unit, USDA-ARS. Tifton GA 31793
William K. Vencill
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Athens GA 30602
*
Corresponding author's E-mail: xlsteve@uga.edu

Abstract

Giant miscanthus is under consideration as a biofuel crop in the United States; however, there is little information on weed management for the establishment and survival of this crop. Therefore, greenhouse and field studies using ornamental pots were conducted in summer 2011 at Tifton, GA, with the objective of screening potential PPI, PRE, and POST herbicides and herbicide combinations for giant miscanthus when establishing from vegetative rhizomes. For the POST treatments, giant miscanthus was established from rhizomes in 7.6-L containers in the field and treated with 27 POST herbicides to evaluate efficacy. Thifensulfuron, metsulfuron, tribenuron, chlorimuron, halosulfuron, rimsulfuron, cloransulam, pinoxaden, bentazon, and metribuzin did not significantly lower shoot height, reduce shoot dry weight, or increase injury compared with nontreated control (NTC) when evaluated at 4 wk after treatment. Nicosulfuron, trifloxysulfuron, sulfometuron, clodinafop, fluazifop, and pyrithiobac caused the greatest injury, reduced plant height, and reduced dry weights compared with the NTC. Sethoxydim, diclofop, flumioxazin, imazamox, imazapic, and imazethapyr decreased plant heights or resulted in increased injury. PPI and PRE treatments included 21 herbicides and herbicide combinations applied at two rates. Results indicated that most treatments containing atrazine, metribuzin, pendimethalin, acetochlor, metolachlor, and mesotrione did not injure or stunt growth; however, EPTC at 4.5 kg ai ha−1 significantly reduced height and dry weight and oxadiazon resulted in greater injury compared with NTC at both rates. These results indicate that PPI, PRE, and POST herbicides can be utilized for establishment of giant miscanthus from vegetative rhizomes. Considering the invasive potential of giant miscanthus, several POST herbicides evaluated in this study such as fluazifop, pyrithiobac, and sulfometuron may be viable options to control this species if it becomes invasive.

Se está considerando a Miscanthus × giganteus (miscanthus) como cultivo para biocombustibles en los Estados Unidos. Sin embargo, hay poca información acerca del manejo de malezas para el establecimiento y supervivencia de este cultivo. Por esta razón, en el verano 2011 en Tifton, GA, se realizaron experimentos de invernadero y de campo usando macetas para ornamentales, con el objetivo de evaluar herbicidas potenciales PPI, PRE, y POST y combinaciones de herbicidas para miscanthus en establecimiento a partir de rhizomas vegetativos. Para los tratamientos POST, miscanthus se estableció a partir de rhizomas en macetas de 7.6 L en el campo y fue tratado con 27 herbicidas POST para evaluar su eficacia. Thifensulfuron, metsulfuron, tribenuron, chlorimuron, halosulfuron, rimsulfuron, cloransulam, pinoxaden, bentazon, y metribuzin no redujeron significativamente la altura o el peso seco del tejido aéreo, ni incrementaron el daño al compararse con el testigo no-tratado (NTC) cuando se evaluó a 4 semanas después del tratamiento. Nicosulfuron, trifloxysulfuron, sulfometuron, clodinafop, fluazifop, y pyrithiobac causaron el mayor daño, redujeron la altura de planta y el peso seco al compararse con NTC. Sethoxydim, diclofop, flumioxazin, imazamox, imazapic, e imazethapyr disminuyeron la altura de planta o resultaron en mayor daño. Los tratamientos PPI y PRE incluyeron 21 herbicidas y combinaciones de los herbicidas, aplicados a dos dosis. Los resultados indicaron que la mayoría de los tratamientos que contenían atrazine, metribuzin, pendimethalin, acetochlor, metolachlor, y mesotrione no dañaron o retrasaron el crecimiento. Sin embargo, EPTC a 4.5 kg ai ha−1 redujo significativamente la altura de planta y el peso seco y oxadiazon resultó en mayor daño al compararse con NTC a ambas dosis. Los resultados indican que se pueden usar herbicidas PPI, PRE, y POST para el establecimiento de miscanthus a partir de rhizomas vegetativos. Considerando el potencial que tiene miscanthus como especie invasiva, varios de los herbicidas POST evaluados en este estudio tales como fluazifop, pyrithiobac, y sulfometuron podrían ser opciones viables para el control de esta especies en caso de que se vuelva invasiva.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, E. K., Voigt, T. B., Bollero, G. A., and Hager, A. G. 2010. Miscanthus x giganteus response to preemergence and postemergence herbicides. Weed Technol. 24:453460.Google Scholar
Barney, J. N. and DiTomaso, J. M. 2008. Nonnative species and bioenergy: are we cultivating the next invader? BioScience. 58:6470.CrossRefGoogle Scholar
Bullard, M. J., Nixon, P.M.I., Kilpatrick, J. B., Heath, M. C., and Speller, C. S. 1995. Principles of weed control in Miscanthus spp. under contrasting field conditions. Pages 991996 in Brighton Crop Protection Conference: Weeds. Proceedings of an International Conference. Farnham, UK British Crop Protection Council.Google Scholar
Daehler, C. 1998. The taxonomic distribution of invasive angiosperm plants: ecological insights and comparison to agricultural weeds. Biol. Conserv. 84:167–80.Google Scholar
Derr, J. F. 2002. Tolerances of ornamental grasses to preemergence herbicides. J. Environ. Hort. 20:161165.Google Scholar
Everman, W. J., Lindsey, A. J., Henry, G. M., Glaspie, C. F., Phillips, K., and McKenney, C. 2011. Response of Miscanthus x giganteus and Miscanthus sinensis to postemergence herbicides. Weed Technol. 25:398403.CrossRefGoogle Scholar
Gray, A. J., Marshall, D. F., and Raybouild, A. F. 1991. A century of evolution in Spartina anglica . Adv. Ecol. Res. 21:162.CrossRefGoogle Scholar
Greef, J. M. and Deuter, M. 1993. Syntaxonomy of Miscanthus x giganteus Greef et Deu. Angew. Bot. 67:8790.Google Scholar
Heaton, E. A., Dohleman, F. G., and Long, S. P. 2008. Meeting US biofuel goals with less land: the potential of Miscanthus . Global Change Biol. 14:20002014. DOI: CrossRefGoogle Scholar
Hirata, M., Hasegawa, N., Nogami, K., and Sonoda, T. 2007. Tuft, shoot and leaf dynamics in Miscanthus sinensis in a young tree plantation under cattle grazing. Trop. Grassl. 41:113128.Google Scholar
Ito, M., Ueki, K., and Sakamoto, S. 1982. Studies on the total vegetation control in railroad: 1. Major weeds and factors affecting their distribution. Weed Res. Jpn. 27:4148.Google Scholar
Kolar, C. S. and Lodge, D. M. 2001. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16:199204.Google Scholar
Lewandowski, I., Clifton-Brown, J. C., Scurlock, J.M.O., and Huisaman, W. 2000. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy. 19:209227.Google Scholar
Linde-Laursen, I. B. 1993. Cytogenetic analysis of Miscanthusgiganteus', an interspecic hybrid. Hereditas. 119:297300.Google Scholar
Numata, M. 1969. Progressive and retrogressive gradient of grassland vegetation measured by degree of succession—ecological judgment of grassland condition and trend IV. Vegetatio. 19:96127.Google Scholar
Numata, M., ed. 1974. Grassland Vegetation. The Ora and Vegetation of Japan. Tokyo Elsevier. Pp. 125147.Google Scholar
Quinn, L. D., Allen, D. J., and Stewart, J. R. 2010. Invasiveness potential of Miscanthus sinensis: implications for bioenergy production in the United States. GCB Bioenergy. 2:310320.CrossRefGoogle Scholar
Raghu, S., Anderson, R. C., Daehler, C. C., Davis, A. S., Wiedenmann, R. N., and Simberloff, D. 2006. Adding biofuels to the invasive species fire? Science. 313:1742.Google Scholar
SAS Institute, Inc. 2012. SAS/STAT® 9.2 User's Guide. 2nd ed. http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_glimmix_a0000001405.htm. Accessed August 5, 2013.Google Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS:Weed Science Society of America. Pp. 308309.Google Scholar
Sugimoto, Y. 2002. Forest–pastoral systems—studies in Morotuka Village, Miyazaki Prefecture. Grassl. Sci. 47:644651.Google Scholar
Venturi, P. and Venturi, G. 2003. Analysis of energy comparison for crops in European agricultural systems. Biomass Bioenergy. 25:235255.Google Scholar
Yuan, J. S., Tiller, K. H., Al-Ahmad, H., Stewart, N. R., and Stewart, C. N. Jr. 2008. Plants to power: bioenergy to fuel the future. Trends Plant Sci. 13:421429.Google Scholar