Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T04:48:34.653Z Has data issue: false hasContentIssue false

Tomato Root Uptake of Carfentrazone

Published online by Cambridge University Press:  20 January 2017

Aline M. Crespo
Affiliation:
Horticultural Sciences Department, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
Andrew W. MacRae*
Affiliation:
Horticultural Sciences Department, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
Cristiane Alves
Affiliation:
Horticultural Sciences Department, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
Tyler P. Jacoby
Affiliation:
Horticultural Sciences Department, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
Rick O. Kelly
Affiliation:
Horticultural Sciences Department, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
*
Corresponding author's E-mail: awmacrae@ufl.edu

Abstract

Fresh market tomato is an important and valuable crop in Florida, accounting for 630 million dollars farm-gate value, which was 45% of the total value of the U.S. crop in 2010. In order to maintain or increase its productivity, labeled herbicide alternatives to methyl bromide are important to limiting seed production of weeds emerging between the raised plasticulture beds. A study was conducted inside a greenhouse where carfentrazone was applied as a drench at 0.03125×, 0.0625×, 0.125×, 0.25×, 0.5×, 1×, 2×, 4×, and 8× and as a subsurface irrigation at 0.0625×, 0.125×, 0.25×, 0.5×, 1×, 2×, 4×, 8×, and 16× rates. The 1× rate equaled the maximum labeled rate of carfentrazone (35.1 g ai ha−1) that would be applied to an area of 0.360 m2. Both the drench and subsurface trials showed an increase in plant injury and reduced growth as the rate of carfentrazone increased. The drench trial, however, was observed to have higher visible injury and greater growth reduction (based on plant measurement) than the subsurface trial, when comparing similar rates. For the 1× rate of carfentrazone in the drench trial vs. the subsurface trial, injury was 66 and 24.5%, respectively. For the 1× rate the tomato plants had estimated growth, based on the curves fit for the data, of 4.8% vs. 39.9% for the drench and subsurface trials, respectively. The subsurface trial better represents what happens in the field when carfentrazone root uptake injury is observed since it is normally observed to be around 10% or less. This still leaves a level of concern; once a 10% injury level in the subsurface trial was estimated to have reduced tomato growth, fruit weight, and total shoot dry weight by 33, 15, and 9.5%, respectively.

El tomate fresco es un cultivo importante y valioso en Florida, representando 630 millones de dólares de valor a las puertas de las fincas, lo cual a su vez representó 45% del total del valor del cultivo en Estados Unidos en 2010. Con el fin de mantener o incrementar su productividad, los herbicidas registrados para este cultivo como alternativas a methyl bromide son importantes para limitar la producción de semillas de malezas que emergen entre las camas con cobertura plástica. Se realizó un estudio dentro de un invernadero donde se aplicó carfentrazone como “drench” a dosis de 0.03125×, 0.0625×, 0.125×, 0.25×, 0.5×, 1×, 2×, 4× y 8× y mediante irrigación subterránea a dosis de 0.0625×, 0.125×, 0.25×, 0.5×, 1×, 2×, 4×, 8× y 16×. La dosis 1× fue igual a la dosis máxima en la etiqueta de carfentrazone (35.1 g ai ha−1) que sería aplicada a un área de 0.360 m2. Ambas formas de aplicación, drench y subterránea, mostraron un incremento en el daño de la planta y redujeron el crecimiento conforme se aumentó la dosis de carfentrazone. Sin embargo, en el estudio con drench, se observó un mayor daño visible y una mayor reducción en el crecimiento (basándose en medidas de plantas) que en el estudio con aplicación subterránea, cuando se compararon dosis similares. Para la dosis 1× de carfentrazone en el estudio con drench vs. el estudio con aplicación subterránea, el daño fue 66 y 24.5%, respectivamente. Basándose en curvas de mejor ajuste de los datos, para la dosis 1×, las plantas de tomate tuvieron un crecimiento estimado de 4.8% vs. 39.9% para aplicaciones drench y subterráneas, respectivamente. El estudio con aplicación subterránea representa mejor lo que pasa en el campo cuando se observa un daño causado por la absorción de carfentrazone por las raíces, el cual es normalmente 10% o menor. Esto aún es preocupante, ya que se estimó que un nivel de daño de 10% en el estudio de aplicación subterránea redujo el crecimiento del tomate, el peso del fruto y el peso seco total de la parte aérea en 33, 15 y 9.5%, respectivamente.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2008. Aim® EC herbicide product label. FMC Corp. Publication No. 279-3241. Philadelphia, PA FMC. 17 p.Google Scholar
Christoffoleti, P. J., Borges, A., Nicolai, M., Carvalho, S.J.P., López-Ovejero, R. F., and Monquero, P. A. 2006. Carfentrazone-ethyl applied in post-emergence to control Ipomoea spp. and Commelina benghalensis in sugarcane crop. Planta Daninha. 24:8390.Google Scholar
Culpepper, A. S., Grey, T. L., and Webster, T. M. 2009. Vegetable response to herbicides applied to low-density polyethylene mulch prior to transplant. Weed Technol. 23:444449.Google Scholar
Dayan, F. E., Duke, S. O., Weete, J. D., and Hancock, H. G. 1997. Selectivity and mode of action of carfentrazone-ethyl, a novel phenyl triazolinone herbicide. Pestic. Sci. 51:6573.Google Scholar
Durgan, B. R., Yenish, J. P., Daml, R. J., and Miller, D. W. 1997. Broadleaf weed control in hard red spring wheat (Triticum aestivum) with F8426. Weed Technol. 11:489495.Google Scholar
Gilreath, J. P., Noling, J. W., and Santos, B. M. 2004. Methyl bromide alternatives for bell pepper (Capsicum annuum) and cucumber (Cucumis sativus) rotations. Crop Prot. 23:347351.Google Scholar
Grichar, W. J., Dotray, P. A., and Baughman, T. A. 2010. Peanut variety response to postemergence applications of carfentrazone-ethyl and pyraflufen-ethyl. Crop Prot. 29:10341038.Google Scholar
Hutchinson, P.J.S., Beutler, B. R., and Hancock, D. M. 2006. Desiccant evaluations: late-season hairy nightshade (Solanum sarrachoides) control and seed response. Weed Technol. 20:3740.Google Scholar
Ngim, K. K. and Crosby, D. G. Fate and kinetics of carfentrazone-ethyl herbicide In California, USA, flooded rice fields. 2001. Environ. Toxicol. Chem. 20:485490.Google Scholar
Noling, J. W. and Becker, J. O. 1994. The challenge of research and extension to define and implement alternatives to methyl bromide. J. Nematol. 26:573586.Google Scholar
Ogbuchiekwe, E. J., McGiffen, M. E. Jr., Nunez, J., and Fennimore, S. A. 2004. Tolerance of carrot to low-rate preemergent and postemergent herbicides. HortScience. 39:291296.Google Scholar
Thompson, W. M. and Nissen, S. J. 2002. Influence of shade and irrigation on the response of corn (Zea mays), soybean (Glycine max), and wheat (Triticum aestivum) to carfentrazone-ethyl. Weed Technol. 16:314318.Google Scholar
[USDA] U.S. Department of Agriculture. 2011. Vegetable 2010 Summary. Agricultural Statistics Board. P. 910. http://usda.mannlib.cornell.edu/usda/current/VegeSumm/VegeSumm-01-27-2011.pdf. Accessed: June 30, 2011.Google Scholar
Webster, T. M., Csinos, A. S., Johnson, A. W., Dowler, C. C., Sumner, D. R., and Fery, R. L. 2001. Methyl bromide alternatives in a bell pepper–squash rotation. Crop Prot. 20:605614.Google Scholar