Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T09:32:38.212Z Has data issue: false hasContentIssue false

Understanding the Role of Allelopathy in Weed Interference and Declining Plant Diversity

Published online by Cambridge University Press:  20 January 2017

Chester L. Foy*
Affiliation:
Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0331
Inderjit
Affiliation:
Department of Botany, Panjab University, Chandigarh 160014, India
*
Corresponding author's E-mail: cfoy@vt.edu.

Abstract

Several weed species have been reported to have allelopathic activities. However, most of these studies indicate the probable involvement of allelochemicals but are not conducted in field settings. In addition to their adverse effects on growth and yield of many crop species, many troublesome weeds such as mugwort and lantana influence biodiversity. More studies on the ecological, physiological, and molecular aspects of weed allelopathy should be conducted in order to better understand community structure and declining biodiversity.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bing, A. 1983. Problems in mugwort control in lawns. Proc. Northwest Weed Sci. Soc. Abstr. 376.Google Scholar
Blum, U., Shafer, S. R., and Lehman, M. E. 1999. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. experimental model. Crit. Rev. Plant Sci. 18: 673693.Google Scholar
Chang, M., Netzly, D. H., Butler, L. G., and Lynn, D. G. 1986. Chemical regulation of distance: characterization of the first natural host germination stimulant for Striga asiatica . J. Am. Chem. Soc. 108: 75587560.Google Scholar
Chou, C. S. 1999. Role of allelopathy in plant diversity and sustainable agriculture. Crit. Rev. Plant Sci. 18: 609636.Google Scholar
Czarnota, M. A., Paul, R. N., Dayan, F. E., Nimbal, C. I., and Weston, L. A. 2001. Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol. 15: 813825.Google Scholar
Dakshini, K.M.M., Foy, C. L., and Inderjit, . 1999. Allelopathy: one component in a multifaceted approach to ecology. In Inderjit, , Dakshini, K.M.M., and Foy, C. L., eds. Principles and Procedures in Plant Ecology: Allelochemical Interactions. Boca Raton, FL: CRC Press. pp. 314.Google Scholar
Einhellig, F. A. 1995. Allelopathy: current status and future goals. In Inderjit, , Dakshini, K.M.M., and Einhellig, F. A., eds. Allelopathy: Organisms, Processes, and Applications. Washington, DC: American Chemical Society. pp. 124.Google Scholar
Einhellig, F. A., Rasmussen, J. A., Hejl, A. H., and Souza, I. F. 1993. Effects of root exudate sorgoleone on photosynthesis. J. Chem. Ecol. 19: 369375.Google Scholar
Einhellig, F. A. and Souza, I. F. 1992. Phytotoxicity of sorgoleone found in grain sorghum root exudates. J. Chem. Ecol. 18: 111.Google Scholar
Foy, C. L. 2001. Effect of selected herbicide-adjuvant combinations on mugwort (Artemisia vulgaris). Weed Sci. Soc. Am. Abstr. 109:46.Google Scholar
Friedman, J. and Waller, G. R. 1983. Caffeine: hazards and their prevention in germinating seed of coffee (Coffea arabica). J. Chem. Ecol. 9: 1,0991,106.Google Scholar
Gander, J. R. and Oliver, L. R. 1998. The potential of allelopathic weeds for weed control in soybeans. Weed Sci. Soc. Am. Abstr. 38:62.Google Scholar
Gentle, C. B. and Duggin, J. A. 1997. Allelopathy as a competitive strategy in persistent thickets of Lantana camara L. in three Australian forest communities. Plant Ecol. 132: 8595.Google Scholar
Gonzalez, V. M., Kazimir, J., Nimbal, C., Weston, L. A., and Cheniae, G. M. 1997. Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J. Agric. Food Chem. 45: 14151421.Google Scholar
Hardin, G. 1960. The competitive exclusion principle. Science 131: 12921297.Google Scholar
Holm, L., Doll, J., Holm, E., Pancho, J., and Herberger, J. 1997. World Weeds: Natural Histories and Distribution. New York: J. Wiley. 1,129 p.Google Scholar
Inderjit, and Foy, C. L. 1999. Nature of the interference mechanism of mugwort (Artemisia vulgaris). Weed Technol. 13: 176182.Google Scholar
Inderjit, , Kaur, M., and Foy, C. L. 2001. On the significance of field studies in allelopathy. Weed Technol. 15: 792797.Google Scholar
Inderjit, and Keating, K. I. 1999. Allelopathy: principles, procedures, processes, and promises for biological control. Adv. Agron. 67: 141231.Google Scholar
Inderjit, and Weston, L. A. 2000. Are laboratory bioassays for allelopathy suitable for prediction of field responses? J. Chem. Ecol. 26: 21112118.Google Scholar
Kriticos, D., Brown, J., Radford, I., and Nicholas, M. 1999. Plant population ecology and biological control: Acacia nilotica as a case study. Biol. Control 16: 230239.Google Scholar
Lambers, H., Chapin, F. S. III, and Pons, T. L. 1998. Plant Physiological Ecology. Berlin: Springer-Verlag. 540 p.Google Scholar
Netzly, D. H., Riopel, J. L., Ejeta, G., and Butler, L. G. 1988. Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudate of sorghum (Sorghum bicolor). Weed Sci. 36: 441446.Google Scholar
Nimbal, C. I., Pedersen, J. F., Yerkes, C. N., Weston, L. A., and Weller, S. C. 1996a. Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J. Agric. Food Chem. 44: 13431347.Google Scholar
Nimbal, C. I., Yerkes, C. N., Weston, L. A., and Weller, S. C. 1996b. Herbicidal activity and site of action of the natural product sorgoleone. Pestic. Biochem. Physiol. 54: 7383.Google Scholar
Patterson, D. T. 1986. Allelopathy. In Camper, N. D., ed. Research Methods in Weed Science. 3rd ed. Champaign, IL: Southern Weed Science Society. pp. 111134.Google Scholar
Putnam, A. R. 1985. Weed allelopathy. In Duke, S. O., ed. Weed Physiology, Volume I: Reproduction and Ecophysiology. Boca Raton, FL: CRC Press. pp. 131155.Google Scholar
Rice, E. L. 1984. Allelopathy. Orlando, FL: Academic Press. 422 p.Google Scholar
Waller, G. R. and Einhellig, F. A. 1999. Overview of allelopathy in agriculture, forestry and ecology. In Waller, G. R. and Reinhardt, C., eds. Biodiversity and Allelopathy. Taipai: Academia Sinica. pp. 221245.Google Scholar
Waller, G. R., Yang, C. F., Chen, L. F., et al. 1996. Can soyasaponin I and mono- and bi-desmosides isolated from mungbeans serve as growth enhancers in mungbeans? In Waller, G. R. and Yamasaki, Y., eds. Proc. Int. Symp. Saponins Used in Food and Agriculture. New York: Plenum Publishing. pp. 123140.Google Scholar
Wardle, D. A., Nilsson, M. C., Gallet, C., and Zackrisson, O. 1998. An ecosystem level perspective of allelopathy. Biol. Rev. 73: 305319.Google Scholar
Willis, R. J. 1985. The historical bases of the concept of allelopathy. J. Hist. Biol. 18: 71102.Google Scholar
Wink, M., Latz-Brüning, B., and Schmeller, T. 1999. Biochemical effects of allelopathic alkaloids. In Inderjit, , Dakshini, K.M.M., and Foy, C. L., eds. Principles and Practices in Plant Ecology: Allelochemical Interactions. Boca Raton, FL: CRC Press. pp. 411422.Google Scholar
Zimdahl, R. L. 1999. Fundamentals of Weed Science. 2nd ed. San Diego: Academic Press. 450 p.Google Scholar