Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T03:18:37.741Z Has data issue: false hasContentIssue false

Using the In Vivo Acetolactate Synthase (ALS) Assay for Identifying Herbicide-Resistant Weeds

Published online by Cambridge University Press:  12 June 2017

Sarah Taylor Lovell
Affiliation:
Field Res. Biol., ZENECA Ag. Prod., 495 Co. Rd. 1300 N., Champaign, IL 61821
Loyd M. Wax
Affiliation:
USDA/ARS, Crop Protection Res.
David M. Simpson
Affiliation:
Dep. Agron., Univ. Illinois, Urbana, IL 61801
Marshal McGlamery
Affiliation:
Dep. Agron., Univ. Illinois, Urbana, IL 61801

Abstract

An in vivo ALS assay was used to differentiate between susceptible and resistant kochia biotypes from Idaho and Montana. Experiments were also conducted using this assay to determine the effect of the timing of herbicide application on ALS activity in resistant and susceptible cocklebur biotypes from Mississippi. When treated with chlorsulfuron, resistant kochia biotypes demonstrated 160-and 170-fold resistance at the whole plant level for the Idaho and Montana biotypes, respectively, compared to susceptible biotypes. Using the in vivo ALS assay, the Idaho and Montana biotypes showed 70- and 490-fold resistance, respectively, based on I50 values. The biotypes also demonstrated a low level of cross-resistance to imazethapyr using the in vivo technique. Resistant cocklebur biotypes showed approximately 200-fold resistance to imazaquin compared with susceptible biotypes. This research demonstrated that the in vivo assay can be used effectively to identify resistant biotypes 6 and 24 h after treatment, and to determine the extent of cross-resistance.

Type
Research
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Cotterman, J. C. and Saari, L. L. 1992. Rapid metabolic inactivation is the basis for cross-resistance to chlorsulfuron in diclofop-methyl-resistant rigid ryegrass (Lolium rigidum) biotype SR4/84, Pestic. Biochem. Physiol. 43:182192.Google Scholar
Devine, M. D., Maries, M.A.S., and Hall, L. M. 1991. Inhibition of acetolactate synthase in susceptible and resistant biotypes of Stellaria media . Pestic. Sci. 31:273280.Google Scholar
Gerwick, B. C., Mireles, L. C., and Eilers, R. J. 1993. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol. 7:519524.Google Scholar
Holt, J. S. 1992. History of identification of herbicide-resistant weeds. Weed Technol. 6:615620.Google Scholar
Holt, J. S., Powles, S. B., and Holtum, J.A.M. 1993. Mechanisms and agronomic aspects of herbicide resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:203229.CrossRefGoogle Scholar
Hutchison, J. M., Shapiro, R., and Sweetser, P. B. 1984. Metabolism of chlorsulfuron by tolerant broadleaves. Pestic. Biochem. Physiol. 22:243247.Google Scholar
Jasieniuk, M., Brule-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.CrossRefGoogle Scholar
LeBaron, H. M. 1991. Distribution and seriousness of herbicide-resistant weed infestations worldwide. p. 2743 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Butterworth-Heinemann Ltd., Oxford, England.CrossRefGoogle Scholar
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990a. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.Google Scholar
Mallory-Smith, C. A., Thill, D. C., Dial, M. J., and Zemetra, R. S. 1990b. Inheritance of sulfonylurea herbicide resistance in Lactuca spp. Weed Technol. 4:787790.Google Scholar
Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93:5561.Google Scholar
Saari, L. L., Cotterman, J. C., Smith, W. S., and Primiani, M. M. 1992. Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass, and Russian thistle. Pestic. Biochem. Physiol. 42:110118.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. p. 83140 in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Lewis Publishers, CRC Press, Inc., Boca Raton, FL 33431.Google Scholar
Schmitzer, P. R., Eilers, R. J., and Cseke, C. 1993. Lack of cross-resistance of imazaquin-resistant Xanthium strumarium acetolactate synthase to flumetsulam and chlorimuron. Plant Physiol. 103:281283.Google Scholar
Shaner, D. L. 1991. Mechanisms of resistance to acetolactate synthase/acetohydroxyacid synthase inhibitors. p. 187198 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Butterworth-Heinemann Ltd., Oxford, England.Google Scholar
Simpson, D. M., Stoller, E. W., and Wax, L. M. 1995. An in vivo acetolactate synthase assay. Weed Technol. 9:1722.CrossRefGoogle Scholar
Sweetser, P. B., Schow, G. S., and Hutchison, J. M. 1982. Metabolism of chlorsulfuron by plants: biological basis for selectivity of a new herbicide for cereals. Pestic. Biochem. Physiol. 17:1823.Google Scholar
Westerfeld, W. W. 1945. A colorimetric determination of blood acetoin. J. Biol. Chem. 161:495502.CrossRefGoogle Scholar