Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T09:08:57.003Z Has data issue: false hasContentIssue false

Vapor Movement of Aminocyclopyrachlor, Aminopyralid, and Dicamba in the Field

Published online by Cambridge University Press:  20 January 2017

Stephen D. Strachan*
Affiliation:
DuPont Crop Protection, DuPont Stine-Haskell Research Center, 1090 Elkton Road, Newark, DE 19711
Nancy M. Ferry
Affiliation:
DuPont Crop Protection, DuPont Stine-Haskell Research Center, 1090 Elkton Road, Newark, DE 19711
Tracy L. Cooper
Affiliation:
DuPont Crop Protection, DuPont Stine-Haskell Research Center, 1090 Elkton Road, Newark, DE 19711
*
Corresponding author's E-mail: stephen.d.strachan-1@usa.dupont.com

Abstract

Vapor movement of synthetic auxin herbicides can injure desirable plants outside the treatment zone. Vapor movement of the synthetic auxin herbicides aminocyclopyrachlor and aminocyclopyrachlor methyl was compared with that of the relatively volatile herbicide dicamba and the low volatile herbicide aminopyralid with a soybean bioassay under greenhouse and field conditions. Soybean is very sensitive to these active ingredients. Under greenhouse conditions, 82 (61 to 104) mg ae ha−1 of aminocyclopyrachlor, 26 (18 to 33) mg ae ha−1 of aminocyclopyrachlor methyl, 82 (69 to 95) mg ae ha−1 of aminopyralid, and 61 (47 to 75) mg ae ha−1 of dicamba produced an estimated 25% visual soybean phytotoxicity response when soybean was treated POST at the V3 growth stage (GR25 [95% confidence interval]). In field studies, aminocyclopyrachlor, aminocyclopyrachlor methyl, and aminopyralid were applied at 70 g ae ha−1 and dicamba was applied at 560 g ae ha−1 (labeled application rates) to soybean at the V3 growth stage. All herbicides were applied within an enclosed chamber (3 m by 3 m by 1 m) to mitigate movement of spray droplets. The enclosures were removed shortly after spray application and soybean response immediately surrounding the treated area was recorded in each of eight directions approximately 10 d after treatment. On the basis of bioassay responses, relative amount of vapor movement was dicamba > aminocyclopyrachlor methyl > aminopyralid ≈ aminocyclopyrachlor. Vapor movement of aminocyclopyrachlor was very low indicating that the risk of phytotoxic response of sensitive plants due to volatility of aminocyclopyrachlor is negligible.

El movimiento de vapores de herbicidas auxinas sintéticas puede dañar plantas deseables fuera de la zona de tratamiento. El movimiento de vapores de los herbicidas auxinas sintéticas aminocyclopyrachlor y aminocyclopyrachlor methyl fue comparado con el del herbicida relativamente volátil dicamba y del herbicida de baja volatilidad aminopyralid con un bioensayo con soya bajo condiciones de invernadero y de campo. La soya es muy sensible a estos ingredientes activos. Bajo condiciones de invernadero, 82 (61 a 104) mg ae ha−1 de aminocyclopyrachlor, 26 (18 a 33) mg ae ha−1 de aminocyclopyrachlor methyl, 82 (69 a 95) mg ae ha−1 de aminopyralid, y 61 (47 a 75) mg ae ha−1 de dicamba produjeron un estimado de 25% de respuesta de fitotoxicidad visual en la soya cuando la soya fue tratada POST en el estado de desarrollo V3 (GR25 [95% intervalo de confianza]). En los estudios de campo, aminocyclopyrachlor, aminocyclopyrachlor methyl, y aminopyralid fueron aplicados a 70 g ha−1 y dicamba fue aplicado a 560 g ha−1 (dosis de aplicación según la etiqueta) a soya en el estado de desarrollo V3. Todos los herbicidas fueron aplicados dentro de una cubierta cerrada (3 m por 3 m por 1 m) par mitigar el movimiento de gotas de aspersión. Las cubiertas fueron removidas poco después de la aplicación y la respuesta de la soya localizada inmediatamente alrededor del área tratada fue registrada en cada una de las ocho direcciones aproximadamente 10 días después del tratamiento. Con base en las respuestas de los bioensayos, el movimiento relativo del vapor fue dicamba > aminocyclopyrachlor methyl > aminopyralid ≈ aminocyclopyrachlor. El movimiento del vapor de aminocyclopyrachlor fue muy bajo, indicando así que el riesgo de la respuesta de fitotoxicidad de plantas sensibles debido a la volatilidad de aminocyclopyrachlor es insignificante.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baldocchi, D. D., Verma, S. B., and Rosenberg, N. J. 1983. Characteristics of air flow above and within soybean canopies. Boundary-Layer Meteorol. 25 :4354.Google Scholar
Behrens, R. and Lueschen, W. E. 1979. Dicamba volatility. Weed Sci. 27 :486493.Google Scholar
Claus, J., Turner, R., Armel, G., and Holliday, M. 2008. DuPont aminocyclopyrachlor (proposed common name) (DPX-MAT28/KJM44) herbicide for use in turf, IWC, bare-ground, and brush markets. Page 654. in Proceedings of the 5th International Weed Science Congress, Vol. 1. Vancouver, BC : International Weed Science Society.Google Scholar
Esker, P. D., Sparks, A. H., Antony, G., Bates, M., Dall' Acqua, W., Frank, E. E., Huebel, L., Segovia, V., and Garrett, K. A. 2007. Modeling dispersal gradients. http://www.apsnet.org/edcenter/advanced/topics/EcologyAndEpidemiologyInR/ModelingDispersalGradients/Pages/default.aspx. Accessed: September 24, 2012.Google Scholar
Finney, D. J., ed. 1971. Probit Analysis. 3rd ed. London : Cambridge University Press. 333 p.Google Scholar
FOCUS. 2006. Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies in EU Registration. Report of the FOCUS Work Group on Degradation Kinetics. EC Document Reference Sanco/10058/2005, version 2.0. 434 p.Google Scholar
Grover, R., Maybank, J., and Yoshida, K. 1972. Droplet and vapor drift from butyl ester and dimethylamine salt of 2, 4–D. Weed Sci. 20 :320324.Google Scholar
Matthews, G. A. 1992. Pesticide Application Methods. 2nd ed. New York : J. Wiley, P. 78.Google Scholar
McCullagh, P. and Nelder, J. A., eds. 1989. Generalized Linear Models. 2nd ed. London. Chapman and Hall. 511 p.Google Scholar
Meyers, R. and K. T. P. U. 1986. Testing of a higher-order closure model for modeling airflow within and above plant canopies. Boundary-Layer Meteorol. 37 :297311.Google Scholar
Perrier, E. R., Robertson, J. M., Millington, R. J., and Peters, D. B. 1972. Spatial and temporal variation of wind above and within a soybean canopy. Agric. Meteorol. 10 :421442.Google Scholar
Ritchie, S. W., Hanway, J. J., Thompson, H. E., and Benson, G. O. 1989. How a Soybean Plant Develops. Special Report No. 53. Ames, IA : Iowa State University Cooperative Extension Service.Google Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS : Weed Science Society of America. Pp. 331332 and 335–338.Google Scholar
Strachan, S. D., Casini, M. S., Heldreth, K. M., Scocas, J. A., Nissen, S. J., Bukun, B., Lindenmayer, R. B., Shaner, D. L., Westra, P., and Brunk, G. 2010. Vapor movement of synthetic auxin herbicides: aminocyclopyrachlor, aminocyclopyrachlor-methyl ester, dicamba, and aminopyralid. Weed Sci. 58 :103108.Google Scholar
Strachan, S. D., Nanita, S. C., Ruggiero, M., Casini, M. S., Heldreth, K. M., Hageman, L. H., Flanigan, H. A., Ferry, N. M., and Pentz, A. M. 2011. Correlation of chemical analysis of residual levels of aminocyclopyrachlor in soil to biological responses of alfalfa, cotton, soybean, and sunflower. Weed Technol. 25 :239244.Google Scholar
Texas Agricultural Code. 1984. St. Paul, MN: West, Chapter 75.Google Scholar
van Rensburg, E. and Breeze, V. G. 1990. Uptake and development of phytotoxicity following exposure to vapour of the herbicide 14C 2, 4-D butyl by tomato and lettuce plants. Environ. Exp. Bot. 30 :405414.Google Scholar
Wax, L. M., Knuth, L. A., and Slife, F. W. 1969. Response of soybeans to 2, 4–D, dicamba, and picloram. Weed Sci. 17 :388393.Google Scholar
Weather Underground. 2010. http://www.wunderground.com/history/airport. Accessed: September 24, 2012.Google Scholar