Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T09:04:54.687Z Has data issue: false hasContentIssue false

Weed Control, Crop Response, and Profitability When Intercropping Cantaloupe and Cotton

Published online by Cambridge University Press:  20 January 2017

Peter M. Eure*
Affiliation:
Crop and Soil Sciences, University of Georgia, Tifton, GA 31793
A. Stanley Culpepper
Affiliation:
Crop and Soil Sciences, University of Georgia, Tifton, GA 31793
Rand M. Merchant
Affiliation:
Crop and Soil Sciences, University of Georgia, Tifton, GA 31793
Phillip M. Roberts
Affiliation:
Department of Entomology, University of Georgia, Athens, GA 30602
Guy C. Collins
Affiliation:
Crop and Soil Sciences, University of Georgia, Tifton, GA 31793
*
Corresponding author's E-mail: pmeure@uga.edu.

Abstract

Intercropping cantaloupe and cotton can improve grower profits over traditional monoculture practices because crops share resources and production costs. However, developing effective programs to control weeds with herbicides that are safe to both crops can be challenging. Research was conducted to (1) identify herbicide systems to manage Palmer amaranth in cantaloupe–cotton intercropping production while minimizing crop injury, and (2) determine the profitability of cantaloupe–cotton intercropping. Ethalfluralin applied preplant did not injure cantaloupe or cotton, but Palmer amaranth was not controlled. The addition of fomesafen preplant improved Palmer amaranth control to at least 92% without injuring cotton, but cantaloupe necrosis and chlorosis of up to 20% was recorded. Halosulfuron-methyl was safely applied over cantaloupe, but its residual activity reduced cotton growth by 12% at 4 wk after planting; halosulfuron-methyl did not improve Palmer amaranth control beyond that noted with ethalfluralin plus fomesafen preplant. Intercropping systems that controlled Palmer amaranth at least 92% produced cantaloupe yields (25,760 to 25,890 fruit ha−1) similar to the weed-free monoculture system (24,120 fruit ha−1) but produced lint cotton yields that were 170 to 275 kg ha−1 less than the weed-free monoculture cotton system. Although cotton production was less in the intercropping system, the returns over variable costs with intercropping systems ($21,670 to 21,920 ha−1) exceeded those of cantaloupe monoculture ($18,070 ha−1) or cotton monoculture ($1,890 to $1,955 ha−1), as long as Palmer amaranth was controlled. Intercropping cantaloupe and cotton is an effective approach to share land resources and production inputs as well as to improve grower profitability and is being rapidly adopted by Georgia growers.

El sembrar melón cantaloupe y algodón en forma intercalada puede mejorar las ganancias de los productores, en comparación con las prácticas tradicionales de monocultivo, porque los cultivos comparten recursos y los costos de producción. Sin embargo, el desarrollo de programas efectivos de control de malezas con herbicidas que son seguros para ambos cultivos puede ser un reto difícil. Se realizó una investigación para (1) identificar sistemas de herbicidas para el manejo de Amaranthus palmeri en producción intercalada de cantaloupe-algodón minimizando el daño al cultivo, y (2) determinar la rentabilidad del cultivo intercalado de cantaloupe-algodón. Ethalfluralin aplicado en pre-siembra no dañó al cantaloupe o al algodón, pero A. palmeri no fue controlado. El agregar fomesafen en pre-siembra aumentó el control de A. palmeri a al menos 92% sin dañar el algodón, pero en cantaloupe se registró necrosis y clorosis hasta 20%. Halosulfuron-methyl fue seguro aplicado sobre cantaloupe, pero su actividad residual redujo el crecimiento del algodón en 12% a 4 semanas después de la siembra. Halosulfuron-methyl no mejoró el control de A. palmeri más allá del control notado con ethalfluralin más fomesafen en pre-siembra. Los sistemas intercalados que controlaron A. palmeri en al menos 92% produjeron rendimientos de cantaloupe (25,760 a 25,890 frutos ha−1) similares al sistema de monocultivo libre de malezas (24,120 frutos ha−1), pero produjeron rendimientos de fibra de algodón que fueron 170 a 275 kg ha−1 menores que el sistema de monocultivo libre de malezas. Aunque la producción fue menos que el sistema de cultivos intercalados, los ingresos sobre costos variables con los sistemas de cultivos intercalados ($21,670 a 21,920 ha−1) excedieron los del monocultivo de cantaloupe ($18,070 ha−1) o del monocultivo de algodón ($1,890 a $1,955 ha−1), siempre y cuando A. palmeri fuera controlado. Sembrar en forma intercalada cantaloupe y algodón es una forma efectiva de distribuir los recursos del terreno y los insumos de producción, a la vez que se mejora la rentabilidad del productor, y que está siendo rápidamente adoptada por los productores de Georgia.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adcock, CW, Foshee, WG III, Wehtje, GR, Gilliam, CH (2008) Herbicide combinations in tomato to prevent nutsedge punctures in plastic mulch for multi-cropping systems. Weed Technol 22:136141 Google Scholar
Ahmad, S, Rao, MR (1982) Performance of maize-soybean intercrop combination in the tropics: Results of a multilocation study. Field Crop Res 5:147161 Google Scholar
Anonymous (2004) Sandea® herbicide product label. Gowan Company Publication No. 01-R0614. Yuma, AZ: Gowan. 20 pGoogle Scholar
Bangarwa, SK, Norsworthy, JK, Gbur, EE (2009) Cover crop and herbicide combinations for weed control in polyethylene-mulched bell pepper. Horttechnology 19: 405410 Google Scholar
Bress, M (2002) Trickle-irrigation cantaloupe cost-return budget for Missouri. Columbia, MO: Department of Agriculture Economics University of Missouri Publication FMB-6700. 3 pGoogle Scholar
Buringh, P, Dudal, R (1987) Agricultural land use in space and time. Pages 943 in Woman, MG, Fournier, FGA, eds. Land Transformation in Agriculture. New York: J. Wiley Google Scholar
Caamal-Maldonado, JA, Jimenez-Osornion, JA, Torres-Barragan, A, Anaya, AL (2011) The use of allelopathic legume cover and mulch species for weed control in cropping systems. Agron J 93:2736 Google Scholar
Crookston, RK, Hill, DS (1979) Grain yields and land equivalent ratios from intercropping corn and soybean in Minnesota. Agron J 71:4144 Google Scholar
Culpepper, AS (2014) Georgia Cotton Production Guide: Weed Management in Cotton. Collins, GC, ed. Athens, GA: The University of Georgia Cooperative Extension Pub CSS-13-01. http://www.ugacotton.com/vault/file/2014-UGA-Cotton-Production-Guide.pdf. Accessed August 4, 2014Google Scholar
Dittmar, PJ, Monks, DW, Jennings, KM (2012) Effect of drip-applied herbicides on yellow nutsedge in plasticulture. Weed Technol 26:243247 Google Scholar
Everman, WJ, Clewis, SB, York, AC, Wilcut, JW (2009) Weed control and yield with flumioxazin, fomesafen, and S-metolachlor systems for glufosinate-resistant cotton residual weed management. Weed Technol 23:391397 Google Scholar
Fortin, MC, Culley, J, Edwards, M (1994) Soil water, plant growth, and yield of strip-intercropping corn. J Prod Agric 88:69 Google Scholar
Gardner, AP, York, AC, Jordan, DL, Monks, DW (2006) Management of annual grasses and Amaranthus spp. in glufosinate-resistant cotton. J Cotton Sci 10:328338 Google Scholar
Gilbreath, JP, Duraneau, SJ (1986) Photodegradation of paraquat applied to polyethylene mulch film. Hortscience 21:11451146 Google Scholar
Gong, Z, Lin, P, Chen, J, Hu, X (2000) Classic farming systems in China. J Crop Prod 3:1121 Google Scholar
Grey, TL, Bridges, DC, NeSmith, DS (2000) Tolerance of cucurbits to the herbicides clomazone, ethalfluralin, and pendimethalin. Hortscience 35:637641 Google Scholar
Grey, TL, Vencill, WK, Webster, TM, Culpepper, AS (2009) Herbicide dissipation from low density polyethylene mulch. Weed Sci 57:351356 Google Scholar
Hauggaard-Nielsen, H, Jensen, E.S. (2001) Evaluating pea and barley cultivars for complementarity intercropping at different levels of soil N availability. Field Crop Res 72:185196 Google Scholar
Horwith, B (1985) A role for intercropping in modern agriculture. Biol Sci 35:286291 Google Scholar
Johnson, DH, Talbert, RE (1993) Imazaquin, chlorimuron, and fomesafen may injure rotational vegetables and sunflower. Weed Technol 7:573577 Google Scholar
Johnson, WC, Mullinix, BG Jr. (2002) Weed management in watermelon (Citrullus lanatus) and cantaloupe (Cucumis melo) transplanted on polyethylene-covered seedbeds. Weed Technol 16:860866 Google Scholar
Johnson, WC, Mullinix, BG Jr. (2005) Effect of herbicide application method on weed management and crop injury in transplanted cantaloupe production. Weed Technol 19:108112 Google Scholar
Kahn, BA (2010) Intercropping for field production of peppers. Hort Tech 20:530532 Google Scholar
Kantor, S (1999) Comparing yields with land equivalent ratio (LER). Renton, WA: Washington State University Agriculture and Natural Resource Fact Sheet 532. 4 pGoogle Scholar
Keating, BA, Carberry, PS (1993) Resource capture and use in intercropping: solar radiation. Field Crop Res 34:273301 Google Scholar
Langston, DB Jr., MacDonald, G, Westberry, GO (2009) Cantaloupe and specialty melons. Coolong, T, Boyhan, GE eds. Athens, GA: The University of Georgia Cooperative Extension Bulletin 1179. http://extension.uga.edu/publications/files/pdf/B% 201179_3.PDF. Accessed August 4, 2014Google Scholar
Lesoing, GW, Francis, CS (1999) Strip intercropping effects on yield and yield components of corn, grain sorghum, and soybean. Agron J 91:807813 Google Scholar
Letourneau, DK, Armbrecht, I, Rivera, BS, Lerma, JM (2011) Does plant diversity benefit agroecosystems? a synthetic review. Ecol Appl 21:921 Google Scholar
Lynam, JK, Sanders, JH, Mason, SC (1986) Economics and risk in multiple cropping. Pages 250266 in Francis, CA, ed. Multiple Cropping Systems. New York: Macmillan Google Scholar
Machado, S (2009) Does intercropping have a role in modern agriculture? J Soil Water Conserv 84:5557 Google Scholar
MacRae, AW, Webster, TM, Sosnoskie, LM, Culpepper, AS, Kichler, JM (2013) Cotton yield loss potential in response to length of Palmer amaranth interference. J Cotton Sci 17:227232 Google Scholar
Morgan, GD, Baumann, PA, Chandler, JM (2001) Competitive impact of Palmer amaranth on cotton development and yield. Weed Technol 15:408412 Google Scholar
Nerson, H (1989) Weed competition in muskmelon and its effects on yield and fruit quality. Crop Prot 8:439443 Google Scholar
Peachey, E, Doohan, D, Koch, T (2012) Selectivity of fomesafen based systems for preemergence weed control in cucurbit crops. Crop Prot 40:9197 Google Scholar
Pendleton, JW, Bolen, CD, Seif, RD (1963) Alternating strips of corn and soybeans vs solid plantings. Agron J 55:293295 Google Scholar
Puri, S, Panwar, P, eds. (2007) Agroforestry: Systems and Practices. New Delhi, India: New India Pp 124 Google Scholar
Risch, SJ (1983) Intercropping as cultural pest control: prospects and limitations. Environ Manag 7:914 Google Scholar
Rusinamhodzi, L, Corbeels, M, Nyamangara, J, Giller, KE (2012) Maize–grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crop Res 136:1222 Google Scholar
Shrefler, JW, Brandenberger, LP, Webber, CL III, Roberts, W, Payton, ME, Wells, LK (2007) POST weed control using halosulfuron-methyl in direct-seeded watermelon. Weed Technol 21:851856 Google Scholar
Shurley, D, Smith, A (2013) Georgia Cotton Costs and Return Budget Estimates. Athens, GA: University of Georgia Cotton Enterprise Budgets. http://www.ugacotton.com/budgets/. Accessed August 1, 2014Google Scholar
Szumigalski, AR, Van Acker, RC (2008) Land equivalent ratios, light interception, and water use in intercrops in the presence or absence of in-crop herbicides. Agron J 100:11451154 Google Scholar
Tankersely, TB, Chafin, J, Smith, A, Roberts, P, Collins, G, Langston, D, Dillard, J, Dillard, W (2011) Evaluation of cantaloupe and cotton intercropping to determine economic feasibility and growth compatibility. Pages 146147 in Proceedings of the Beltwide Cotton Conference. Memphis, TN National Cotton Council Google Scholar
Terry, TE, Stall, WM, Shilling, DG, Bewick, TA, Kostewicz, SR (1997) Smooth amaranth (Amaranthus hybridus L.) interference with watermelon (Citrullus lanatus L.) and muskmelon (Cucumis melo L.) production. Hortscience 32:620632 Google Scholar
Ward, SM, Webster, TM, Steckel, LE (2013) Palmer amaranth (Amaranthus palmeri): a review. Weed Technol 27:1227 Google Scholar
Webster, TM (2005) Weed survey—southern states: broadleaf crops subsection. Pages 291306 in Proceedings of Southern Weed Science Society Annual Meeting. Charlotte, NC: Southern Weed Science Society Google Scholar
Webster, TM (2006) Weed survey—southern states: vegetable, fruit, and nut crops subsection. Pages 260277 in Proceedings of Southern Weed Science Society Annual Meeting. San Antonio, TX: Southern Weed Science Society Google Scholar
West, TD, Griffith, DF (1992) Effect of strip-intercropping corn and soybean on yield and profit. J Prod Agric 5:107110 Google Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS (2010) Palmer amaranth control in soybean with glyphosate and conventional herbicide systems. Weed Technol 24:403410 Google Scholar