Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T06:03:26.390Z Has data issue: false hasContentIssue false

Weed Control in Wide- and Narrow-Row Soybean (Glycine max) with Imazamox, Imazethapyr, and CGA-277476 plus Quizalofop

Published online by Cambridge University Press:  12 June 2017

Kelly A. Nelson
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824-1325
Karen A. Renner
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824-1325

Abstract

Field experiments were conducted at East Lansing and Clarksville, MI, to evaluate the efficacy of imazamox, imazethapyr, and CGA-277476 plus quizalofop applied postemergence in wide- (76-cm) and narrow- (19-cm) row soybean. Soybean injury from all herbicides was minimal 14 days after treatment (DAT), except for CGA-277476 at 79 g ai/ha plus 69 g ai/ha quizalofop, which caused 30% soybean injury at the Clarksville location. Adding 4 g ai/ha CGA-248757 to 65 g ai/ha CGA-277476 plus quizalofop reduced common ragweed control, but increased redroot pigweed control in wide rows compared to 79 g ai/ha CGA-277476 plus quizalofop. Imazamox at 35 and 45 g ai/ha provided greater common ragweed and common lambsquarters control than imazethapyr at 70 g ai/ha 28 DAT. All herbicide treatments controlled velvetleaf. Common ragweed and common lambsquarters control by all herbicide treatments was enhanced in narrow- compared to wide-row soybean 56 DAT as was redroot pigweed control by CGA-277476 treatments. Total weed biomass and soybean yield in wide-row soybean treated with imazamox at 45 g/ha was not different from the hand-weeded control. In narrow-row soybean, soybean yield was equal to the hand-weeded control for 35 and 45 g/ha imazamox and 70 g/ha imazethapyr. Postemergence herbicide treatments resulted in less weed biomass and greater soybean yield in narrow- compared to wide-row soybean.

Type
Research
Copyright
Copyright © 1997 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ballard, T. O., and Hellmer, M. 1995. AC 299,263: efficacy in soybeans as influenced by postemergence timing. Proc. N. Cent. Weed Sci. Soc. 50:132133.Google Scholar
Bauer, T., Threewitt, T., Stahlberg, L., Moses, A., Jones, K., Kidder, D., and Porpiglia, P. 1995. Weed management programs in soybeans with CGA-277476. Proc. N. Cent. Weed Sci. Soc. 50:140.Google Scholar
Bauer, T. A., Pruss, S. W., Dill, T. R., and Kidder, D. 1996. Sequential soybean herbicide programs including CGA-277476. Proc. N. Cent. Weed Sci. Soc. 51:131132.Google Scholar
Bethlenfalvay, G., and Norris, R. F. 1975. Phytotoxic action of desmedipham: influence of temperature and light intensity. Weed Sci. 23:499503.CrossRefGoogle Scholar
Board, J. E., Kamal, M., and Harville, B. G. 1992. Temporal importance of greater light interception to increased yield in narrow-row soybean. Agron. J. 84:575579.CrossRefGoogle Scholar
Brooks, R. L., Porpiglia, P. J., Peek, J. W., Meyer, W., Gutbrod, K., and Gut, H. 1995. CGA-277476, a new postemergence herbicide for soybeans. Weed Sci. Soc. Am. Abstr. 35:8.Google Scholar
Burnside, O. C., and Colville, W. L. 1964. Soybean and weed yields as affected by irrigation, row spacing, tillage, and amiben. Weeds 12:109112.CrossRefGoogle Scholar
Burnside, O. C., and Moomaw, R. S. 1977. Control of weeds in narrow-row soybeans. Agron. J. 69:793796.CrossRefGoogle Scholar
Busse, S. R., and Hartberg, T. J. 1994. Weed control and rotational crop response with AC 299,263 in soybeans. Proc. N. Cent. Weed Sci. Soc. 49:132.Google Scholar
Cantwell, J. R., Liebl, R. A., and Slife, F. W. 1989. Imazethapyr for weed control in soybean (<i>Glycine max</i>). Weed Technol. 3:596601.CrossRefGoogle Scholar
Carey, B. J., and DeFelice, M. S. 1991. Timing of chlorimuron and imazaquin application for weed control in no-till soybeans (<i>Glycine max</i>). Weed Sci. 39:232237.CrossRefGoogle Scholar
Fausey, J. C., and Renner, K. A. 1996. A comparison of CGA-248757 and flumiclorac for broadleaf weed control. Proc. N. Cent. Weed Sci. Soc. 51:127128.Google Scholar
Fontes, L.A.N., and Ohlrogge, A. J. 1972. Influence of seed size and population on yield and other characteristics of soybean [<i>Glycine max</i> (L.) Merr.]. Agron. J. 64:833836.CrossRefGoogle Scholar
Gednalski, J. V., Johnson, W. G., and Alley, G. W. 1995. Influence of various adjuvants on postemergence weed control in soybeans with AC 299,263. Proc. N. Cent. Weed Sci. Soc. Am. 50:133.Google Scholar
Hart, R., Lignowski, E., and Taylor, F. 1991. Imazethapyr herbicide. <i>In</i> Shaner, D. L. and O'Connor, S. L., eds. The Imidazolinone Herbicides. Boca Raton, FL: CRC Press. pp. 247256.Google Scholar
Helsel, Z. R., and Scott, J. H. 1987. Planting practices. <i>In</i> Helsel, Z. R., Esslinger, D., Anad, S., and Laur, G., eds. Missouri Soybean Handbook. Columbia, MO: University of Missouri Cooperative Extension Service Manual 123. pp. 2328.Google Scholar
Hesterman, O. B., Kells, J. J., and Vitosh, M. L. 1987. Producing Soybeans in Narrow Rows. East Lansing, MI: Michigan State University Cooperative Extension Service Publication E-2080. p. 6.Google Scholar
Holshouser, D. L., and Coble, H. D. 1990. Compatibility of sethoxydim with five postemergence broadleaf herbicides. Weed Technol. 4:128133.CrossRefGoogle Scholar
James, J. R., Kidder, D. W., and Dill, T. R. 1996. Postemergence dicot weed control in soybeans with CGA-277476 applied alone and with other herbicides. Proc. N. Cent. Weed Sci. Soc. 51:132.Google Scholar
Jeffers, D. L., 1987. Development and growth. <i>In</i> Beuerlein, J., Jeffers, D. L., and Eckert, D., eds. The Soybean in Ohio. Columbus, OH: Ohio Cooperative Extension Service Publication 741. pp. 814.Google Scholar
Kidder, D., and Johnson, M. D. 1997. Grass control in soybeans with CGA-277476; alone, in sequential, and in tankmix programs. Weed Sci. Soc. Am. Abstr. 37:1.Google Scholar
Kidder, D. W., and Porpiglia, P. J. 1996. CGA-277476 and CGA-248757 for broad spectrum, postemergence weed control in soybeans. Weed Sci. Soc. Am. Abstr. 36:12.Google Scholar
Klingaman, T. E., King, C. A., and Oliver, L. R. 1992. Effect of application rate, weed species, and weed stage of growth on imazethapyr activity. Weed Sci. 40:227232.CrossRefGoogle Scholar
Malefyt, T., and Quakenbush, L. 1991. Influence of environmental factors on the biological activity of the imidazolinone herbicides. <i>In</i> Shaner, D. L. and O'Connor, S. L., eds. The Imidazolinone Herbicides. Boca Raton, FL: CRC Press. pp. 103127.Google Scholar
McWorter, C. G., and Sciumbato, G. L. 1988. Effects of row spacing, benomyl, and duration of sicklepod (<i>Cassia obtusifolia</i>) interference on soybean (<i>Glycine max</i>) yields. Weed Sci. 36:254259.CrossRefGoogle Scholar
Mickelson, J. A., and Renner, K. A. 1997. Weed control using reduced rates of postemergence herbicides in narrow and wide row soybean. J. Prod. Agric. 10:431437.CrossRefGoogle Scholar
Nalewaja, J. D., Palczynski, J., and Manthey, F. 1990. Imazethapyr efficacy with adjuvants and environments. Weed Technol. 4:765770.CrossRefGoogle Scholar
Nelson, K. A., and Renner, K. A. 1995. A comparison of imazethapyr and AC 299,263 for postemergence weed control in soybeans. Proc. N. Cent. Weed Sci. Soc. 50:129130.Google Scholar
Nelson, K. A., and Renner, K. A. 1997. Postemergence weed control in soybean with CGA-277476 and cloransulam-methyl. Weed Sci. Soc. Am. Abstr. 37:1.Google Scholar
Patterson, M. G., Walker, R. H., Colvin, D. L., Wehtje, G., and McGuire, J. A. 1988. Comparison of soybean (<i>Glycine max</i>)—weed interference from large and small plots. Weed Sci. 36:836839.CrossRefGoogle Scholar
Peters, E. J., Gebhardt, M. R., and Stritzke, J. F. 1965. Interrelations of row spacings, cultivations and herbicides for weed control in soybeans. Weeds 13:285289.CrossRefGoogle Scholar
Rendina, A. R., and Felts, J. M. 1988. Cyclohexanedione herbicides are selective and potent inhibitors of acetyl-CoA carboxylase from grasses. Plant Physiol. 86:983986.CrossRefGoogle ScholarPubMed
Ritter, R. L., and Menbere, H. 1997. Use of CGA-277476 in soybeans. Weed Sci. Soc. Am. Abstr. 37:1.Google Scholar
Sander, K. W., and Porpiglia, P. J. 1996. CGA-248757 combinations for broadleaf weed control in soybeans. Proc. N. Cent. Weed Sci. Soc. 51:132.Google Scholar
Sasaki, Y., Konishi, T., and Nagano, Y. 1995. The compartmentation of acetylcoenzyme A carboxylase in plants. Plant Physiol. 108:445449.CrossRefGoogle ScholarPubMed
Shibles, R. M., and Weber, C. R. 1965. Leaf area, solar radiation interception and dry matter production by soybeans. Crop Sci. 5:575577.CrossRefGoogle Scholar
Shibles, R. M., and Weber, C. R. 1966. Interception of solar radiation and dry matter production by various soybean planting patterns. Crop Sci. 6:5559.CrossRefGoogle Scholar
Thompson, W. M., Nissen, S. J., and Masters, R. A. 1996. Adjuvant effects on imazethapyr, 2,4-D and picloram absorption by leafy spurge (<i>Euphorbia esula</i>). Weed Sci. 44:469475.CrossRefGoogle Scholar
Wax, L. M., and Pendleton, J. W. 1968. Effect of row spacing on weed control in soybeans. Weed Sci. 16:462465.CrossRefGoogle Scholar
Weaver, M. L., and Nylund, R. E. 1963. Factors influencing the tolerance of peas to MCPA. Weeds 11:142148.CrossRefGoogle Scholar
Weber, C. R., Shibles, R. M., and Byth, D. E. 1966. Effect of plant population and row spacing on soybean development and production. Agron. J. 58: 99102.CrossRefGoogle Scholar