Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T08:07:22.720Z Has data issue: false hasContentIssue false

Weed Control with Liquid Carbon Dioxide in Established Turfgrass

Published online by Cambridge University Press:  20 January 2017

Denis J. Mahoney*
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
Matthew D. Jeffries
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
Travis W. Gannon
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
*
Corresponding author's E-mail: djmahone@ncsu.edu.

Abstract

In recent years, increasing implementation of biological, cultural, and mechanical weed-control methods is desired; however, many of these techniques are not viable in established turfgrass systems. The use of freezing or frost for weed control has previously been researched; however, is not well elucidated. Field and greenhouse experiments were conducted to evaluate liquid carbon dioxide (LCD) for weed control in established turfgrass systems. LCD was applied with handheld prototypes that were modified to reduce the amount of LCD required for weed control. Common annual and perennial turfgrass weeds included common chickweed, corn speedwell, goosegrass, large crabgrass, smooth crabgrass, Virginia buttonweed, and white clover. Turfgrass tolerance was evaluated on the following species: hybrid bermudagrass, Kentucky bluegrass, tall fescue, and zoysiagrass. The final modification allowed for lower output (0.5 kg LCD min−1) when compared with the initial prototype (3 kg LCD min−1). In general, weed control increased as LCD increased. When comparing weed species life cycles, annuals were controlled more than perennials (P < 0.0001) at 14 and 28 d after treatment (DAT). Further, exposure time affected control as white clover, Virginia buttonweed, and large crabgrass control was greater (18, 14, 15%, respectively) from the longer exposure time (30 vs. 15 s), although equivalent amounts of LCD (30 kg m−2) were applied. These data also suggest that plant maturity affects control, as large crabgrass control in one- to two- and three- to four-leaf stages (> 90%) was greater than in the one- to two-tiller stage (< 70%). Turfgrass injury at 7 DAT was unacceptable (> 30%) on all species, but declined to 0% by 28 DAT. These data suggest that LCD has the potential to provide an alternative for weed control of select species where synthetic herbicides are not allowed or desired.

En años recientes, se ha hecho deseable el aumento en la implementación de métodos de control de malezas de tipo biológico, cultural, y mecánico. Sin embargo, muchas de estas técnicas no son viables en sistemas de césped establecido. El uso de congelación para el control de malezas ha sido previamente investigado aunque no ha sido bien elucidado. Se realizaron experimentos de campo e invernadero para evaluar el carbon dioxide líquido (LCD) para el control de malezas en sistemas de césped establecido. Se aplicó LCD con prototipos manuales que fueron modificados para reducir la cantidad de LCD requerido para controlar las malezas. Las malezas anuales y perennes comunes en céspedes incluyeron Stellaria media, Veronica arvensis, Eleusine indica, Digitaria sanguinalis, Digitaria ischaeum, Diodia virginiana, y Trifolium repens. La tolerancia del césped fue evaluada en las siguientes especies: bermuda híbrido (Cynodon dactylon × Cynodon transvaalensis), Poa pratensis, Lolium arundinaceum, y Zoysia japonica. La modificación final del prototipo permitió una descarga menor (0.5 kg LCD min−1) cuando se comparó con el prototipo inicial (3 kg LCD min−1). En general, el control de malezas incremento al aumentar la dosis de LCD. Cuando se comparó las especies según su ciclo de vida, las anuales fueron controladas más que las perennes (P<0.0001) a 14 y 28 d después del tratamiento (DAT). Además, el tiempo de exposición afectó el control; así el control de T. repens, D. virginiana, y D. sanguinalis fue mayor (18, 14, 15%, respectivamente) bajo el tiempo de exposición más largo (30 vs. 15 s), aunque se aplicaran cantidades equivalentes de LCD (30 kg m−2). Los datos también sugieren que la madurez de la planta afecta el control. Así el control de D. sanguinalis fue mayor en los estadios de una- a dos- y tres- a cuatro-hojas (>90%) que en los estadios de uno- a dos-hijuelos (<70%). El daño en el césped a 7 DAT fue inaceptable (>30%) en todas las especies, pero disminuyó a 0% a 28 DAT. Estos datos sugieren que LCD tiene el potencial de brindar una alternativa para el control de malezas de especies selectas donde el uso de herbicidas sintéticos no está permitido o no es deseable.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abu-Dieyeh, MH, Watson, AK (2007) Population dynamics of broadleaf weeds in turfgrass as influenced by chemical and biological control methods. Weed Sci 55:371380 Google Scholar
Anonymous (2013a) Cosmetic Lawn Pesticide Use Outlawed in Takoma Park, MD, First Local Ban of Its Type in the US. http://www.beyondpesticides.org/dailynewsblog/?p=11318. Accessed November 15, 2012Google Scholar
Anonymous (2013b) List of Pesticide Products Prohibited From Use in Schools and Child Care Facilities. http://apps.cdpr.ca.gov/schoolipm/school_ipm_law/prohibited_prods.pdf. Accessed November 15, 2012Google Scholar
Baird, JH, Dute, RR, Dickens, R (1992) Ontogeny, anatomy, and reproductive biology of vegetative reproductive organs of Diodia virginiana L. (Rubiaceae). Int J Plant Sci 153:320328 Google Scholar
Bond, W, Grundy, AC (2001) Non-chemical weed management in organic farming systems. Weed Res 41:383405 Google Scholar
Brosnan, JT, Breeden, GK, McCullough, PE (2010) Efficacy of two dithiopyr formulations for control of smooth crabgrass [Digitaria ischaemum (Schreb) Schreb. ex Muhl.] at various stages of growth. Hort Sci 45:961965 Google Scholar
Busey, P (2003) Cultural management of weeds in turfgrass: a review. Crop Sci 43:18991911 Google Scholar
Cisar, JL (2004) Managing turf sustainably: New directions for a diverse planet. Pages 16 in Proceedings of the 4th International Crop Science Congress. Brisbane, Australia Google Scholar
Cohen, O, Rubin, B (2007) Soil solarization and weed management. Pages 177200 in Non-Chemical Weed Management: Principles, Concepts, and Technology. Oxfordshire, UK: CABI Google Scholar
Dernoeden, PH, Carroll, MJ, Krouse, JM (1993) Weed management and tall fescue quality as influenced by mowing, nitrogen, and herbicides. Crop Sci 33:10551061 Google Scholar
Dernoeden, PH, Fidanza, MA, Krouse, JM (1998) Low maintenance performance of five Festuca species in monostands and mixtures. Crop Sci 38:434439 CrossRefGoogle Scholar
Fergedal, S (1993) Weed control by freezing with liquid nitrogen and carbon dioxide snow: a comparison between flaming and freezing. Non-chem Weed Control 163166 Google Scholar
Ghosheh, HZ (2005) Constraints in implementing biological weed control: a review. Weed Biol Manage 5:8392 Google Scholar
Grobe, A, Donaldson, D, Kiely, T, Wu, L (2011) Pesticide Industry Sales and Usage: 2006 and 2007 Market Estimates. Washington, DC: U.S. Environmental Protection Agency, 41 pGoogle Scholar
Hart, SE, Lycan, DW, Murphy, JA (2004) Use of quinclorac for large crabgrass (Digitaria sanguinalis) control in newly summer-seeded creeping bentgrass (Agrostis stolonifera). Weed Technol 18:375379 CrossRefGoogle Scholar
Hatcher, PE, Melander, B (2003) Combining physical, cultural and biological methods: prospects for integrated non-chemical weed management strategies. Weed Res 43:303322 Google Scholar
Hoyle, JA, McElroy, JS, Rose, JJ (2012) Weed control using an enclosed thermal heating apparatus. Weed Technol 26:699707 CrossRefGoogle Scholar
Hoyle, JA, Yelverton, FH, Gannon, TW (2013) Evaluating multiple rating methods utilized in turfgrass weed science. Weed Technol 27:362368 Google Scholar
Jeffries, MD, Yelverton, FH, Gannon, TW (2013) Annual bluegrass (Poa annua) control in creeping bentgrass putting greens with amicarbazone and paclobutrazol. Weed Technol 27:520526 Google Scholar
Jitsuyama, Y, Ichikawa, S (2011) Possible weed establishment control by applying cryogens to fields before snowfalls. Weed Technol 25:545548 CrossRefGoogle Scholar
Johnson, BJ (1980) Postemergence winter weed control in bermudagrass (Cynodon dactylon) turf. Weed Sci 28:385392 Google Scholar
Johnson, BJ (1994) Biological control of annual bluegrass with Xanthomonas campestris pv. poannua in bermudagrass. Hort Sci 29:659662 Google Scholar
Kelly, ST, Coats, GE (2000) Postemergence herbicide options for Virginia buttonweed (Diodia virginiana) control. Weed Technol 14:246251 Google Scholar
Lewis, DF, Gannon, TW, Jeffries, MD, Yelverton, FH (2011) Efficacy of liquid CO2 for weed control in turfgrass systems. Abstract in Proceedings of the 51st Annual Weed Science Society Meeting. Portland, OR: Weed Science Society of America Google Scholar
Lewis, DF, McElroy, JS, Sorochan, JC, Mueller, TC, Samples, TJ, Breeden, GK (2010) Efficacy and safening aryloxyphenoxypropionate herbicides when tank-mixed with triclopyr for bermudagrass control in zoysiagrass turf. Weed Technol 24:489494 Google Scholar
Malyshev, AV, Henry, HL (2012) Frost damage and winter nitrogen uptake by the grass Poa pratensis L.: consequences for vegetative versus reproductive growth. Plant Ecol 213:17391747 Google Scholar
Montzka, SA, Dlugokencky, EJ, Butler, JH (2011) Non-CO2 greenhouse gasses and climate change. Nature 476:4350 Google Scholar
Pearce, RS (2001) Plant freezing and damage. Ann Bot 87:417424 Google Scholar
Reed, TV, Yu, J, McCullough, PE (2013) Aminocyclopyrachlor efficacy for controlling Virginia buttonweed (Diodia virginiana) and smooth crabgrass (Digitaria ischaemum) in tall fescue. Weed Technol 27:488491 Google Scholar
Sanderson, MA, Byers, RA, Skinner, RH, Elwinger, GF (2003) Growth and complexity of white clover stolons in response to biotic and abiotic stress. Crop Sci 43:21972205 CrossRefGoogle Scholar
Singh, J, Laroche, A (1988) Freezing tolerance in plants: a biochemical overview. Biochem Cell Biol 66:650657 Google Scholar
Steele, RD, Torrie, JH, Dickey, DA (1997) Principles and Procedures of Statistics: A Biometrical Approach. 3rd edn. New York: WCB McGraw-Hill. Pp. 352384 Google Scholar
Turgeon, AJ (1999) Turfgrass species. Pages 49108 in Turfgrass Management. 5th edn. Upper Saddle River, New Jersey: Prentice Hall Google Scholar
Warren, GJ (1998) Cold stress: manipulating freezing tolerance in plants. Curr Biol 8:514516 Google Scholar
Xin, Z, Browse, J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893902 Google Scholar
Zabihollahi, V (2009) A study of postemergence herbicides efficacy for goosegrass (Eleusine indica (L.) Gaertn.) control in tall fescue (Festuca arundinacea Schreb.) turf. Majallah-i 'ulūm-i kishāvarzī va manābi'-i abī'ī dānishgāh-i an'atī-i Ifahān 13:219.Google Scholar