Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T05:48:17.990Z Has data issue: false hasContentIssue false

Weed Management and Peanut Response from Applications of Saflufenacil

Published online by Cambridge University Press:  20 January 2017

Sergio Morichetti
Affiliation:
Department of Agronomy, University of Florida, 304 Newell Hall, Gainesville, FL 32611
Jason Ferrell*
Affiliation:
Department of Agronomy, University of Florida, 304 Newell Hall, Gainesville, FL 32611
Greg MacDonald
Affiliation:
Department of Agronomy, University of Florida, 304 Newell Hall, Gainesville, FL 32611
Brent Sellers
Affiliation:
Range Cattle Research and Education Center, University of Florida, Ona, FL 33865
Diane Rowland
Affiliation:
Department of Agronomy, University of Florida, 304 Newell Hall, Gainesville, FL 32611
*
Corresponding author's E-mail: jferrell@ufl.edu

Abstract

Saflufenacil is a new protoporphyrinogen oxidase–inhibiting herbicide registered for use before establishment of field corn and soybean. Generally, peanut plants are tolerant to other herbicides in this class, and no reports document the utility of saflufenacil for in-season weed control. Experiments were conducted to determine whether saflufenacil applied at 12, 25, and 50 g ha−1 could effectively control Benghal dayflower and Palmer amaranth. It was observed that saflufenacil, applied either PRE or POST, was ineffective for Benghal dayflower. The maximum control at 28 d after treatment (DAT) was 79% when 50 g ha−1 was applied to 5- to 10-cm plants. Control of Palmer amaranth from PRE applications was less effective than flumioxazin at 28 DAT. However, POST applications provided > 87% control at 28 DAT when applied to plants 5 to 10 cm in height. For plants 10 to 15 cm in height, > 90% Palmer amaranth control was only achieved by the 50 g ha−1 application rate. For plants 15 to 20 cm in height, no POST application provided > 70% control. Peanut response, in a weed-free environment, to saflufenacil rate and application timing were also evaluated. Peanut stunting ranged from 0 to 36%, relative to application timing. Applications made at 0 d after emergence (DAE) were least injurious, whereas those made at 15 DAE were most injurious. Application of 50 g ha−1 provided the greatest amount of stunting and foliar injury. However, stunting and saflufenacil application rate did not correspond to yield reduction. Saflufenacil application timing did influence peanut yield. Applications made between 0 and 30 DAE did not result in yield loss, whereas applications made at 45 and 60 DAE resulted in a 5 and 19% reduction, respectively. Though saflufenacil has many positive characteristics, higher application rates are required for optimum weed control. However, these higher use rates also resulted in unacceptable levels of injury.

El saflufenacil es un nuevo herbicida inhibidor PPO registrado para uso previo al establecimiento de los cultivos de maíz y soya. Generalmente, las plantas de maní son tolerantes a otros herbicidas de esta clase y no hay reportes que documenten la utilidad de saflufenacil para el control de malezas durante el período de crecimiento del cultivo. Se realizaron experimentos para determinar si el saflufenacil aplicado a 12, 25, y 50 g ha−1, podría controlar efectivamente la Commelina benghalensis y el Amaranthus palmeri. Se observó que el saflufenacil aplicado ya sea PRE o POS fue ineficaz para controlar la C. benghalensis. El control máximo a los 28 días después del tratamiento (DAT) fue 79% cuando se aplicó 50 g ha−1 a plantas de 5–10 cm. El control de A. palmeri con saflufenacil aplicado PRE fue menos eficaz que flumioxazin a los 28 DAT. Sin embargo, las aplicaciones POS proporcionaron más del 87% de control a los 28 DAT cuando se aplicó a plantas de 5–10 cm de altura. Solamente se alcanzó >90% de control de A. palmeri en plantas de 10–15 cm de altura con una dosis de aplicación de 50 g ha−1. Para plantas de 15–20 cm de altura, ninguna aplicación POS proporcionó un control >70%. La respuesta del maní a diferentes dosis de saflufenacil y tiempos de aplicación, en un ambiente libre de malezas, también fue evaluada. El retraso en el crecimiento (achaparramiento) del maní varió de 0 a 36%, en relación al tiempo de aplicación. Las aplicaciones hechas a los 0 días después de la emergencia (DAE) fueron las menos dañinas, mientras que las que se realizaron a los 15 DAE fueron las más dañinas. La aplicación de 50 g ha−1 causó el mayor grado de achaparramiento y de daño foliar. Sin embargo, el grado de achaparramiento y la dosis de aplicación de saflufenacil no tuvieron relación con la reducción en el rendimiento. El tiempo de aplicación sí tuvo impacto en el rendimiento del maní. Las aplicaciones hechas entre 0 y 30 DAE no originaron pérdida en el rendimiento, en tanto que las aplicaciones realizadas a los 45 y 60 DAE provocaron reducciones de 5 y 19%, respectivamente. Aunque el saflufenacil tiene muchas características positivas, se requieren mayores dosis de aplicación para un control óptimo de malezas. Sin embargo, estas dosis mayores también resultaron en niveles de daño inaceptables.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Askew, S. D., Wilcut, J. W., and Cranmer, J. R. 2002. Cotton (Gossypium hirsutum) and weed response to flumioxazin applied preplant and POST directed. Weed Technol. 16:184190.CrossRefGoogle Scholar
Boyer, J. A., Ferrell, J., MacDonald, G., Tillman, B., , D. and Rowland, . 2011. Effect of acifluorfen and lactofen application timing on peanut injury and yield. Online. Crop Management. DOI:10.1094/CM-2011-0519-01-RS.CrossRefGoogle Scholar
Burke, I. C., Schroeder, M., Thomas, W. E., and Wilcut, J. W. 2007. Palmer amaranth interference and seed production in peanut. Weed Technol. 21:367371.CrossRefGoogle Scholar
Culpepper, S., Flanders, J. T., York, A. C., and Webster, T. M. 2004. Tropical spiderwort control in glyphosate-resistant cotton. Weed Technol. 18:432436.CrossRefGoogle Scholar
Dobrow, M. H., Ferrell, J., Faircloth, W., MacDonald, G., Brecke, B., and Erickson, J. 2011. Effect of cover crop management and preemergence herbicides on the control of ALS-resistant Palmer amaranth (Amaranthus palmeri) in peanut. Peanut Sci. 38:7377.CrossRefGoogle Scholar
Geier, P. W., Stahlman, P. W., and Charvat, L. D. 2009. Dose responses of five broadleaf weeds to saflufenacil. Weed Technol. 23:313316.CrossRefGoogle Scholar
Grichar, W. J. 2008. Herbicide systems for control of horse purslane (Trianthema portulacastrum L.), smellmelon (Cucumis melo L.), and Palmer amaranth (Amaranthus palmeri S. Wats.) in peanut. Peanut Sci. 35:3842.CrossRefGoogle Scholar
Grossmann, K., Niggeweg, R., Christiansen, N., Looser, R., and Ehrhardt, T. 2010. The herbicide saflufenacil (Kixor™) is a new inhibitor of protoporphyrinogen IX oxidase activity. Weed Sci. 58:19.CrossRefGoogle Scholar
Keeley, P. E., Carter, C. H., and Thullen, R. J. 1987. Influence of planting date on growth of Palmer amaranth. Weed Sci. 35:199204.CrossRefGoogle Scholar
Knezevic, S. Z., Datta, A., Scott, J., and Charvat, L. D. 2010. Application timing and adjuvant type affected saflufenacil efficacy on selected broadleaf weeds. Crop Protection. 29:9499.CrossRefGoogle Scholar
Maheshwari, P. and Maheshwari, J. K. 1955. Floral dimorphism in Commelina forskalaei and C. benghalensis. Phytomorphology 5:413422.Google Scholar
Maheshwari, P. and Singh, B. 1934. A preliminary note on the morphology of the aerial and underground flowers of Commelina benghalensis, Linn. Curr. Sci. 3:158160.Google Scholar
Sellers, B. A., Smeda, R. J., Johnson, W. G., and Ellersieck, M. R. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Sci. 51:329333.CrossRefGoogle Scholar
Steckel, L., Smith, K., Scott, B., Stephenson, D., Koger, T., Bond, J., Miller, D., Stewart, S., and Dodd, D. 2009. Glyphosate resistant Palmer amaranth in the mid-south. Proc. South. Weed Sci. Soc. 62:373.Google Scholar
Steckel, L., Sprague, C. L., Stoller, E. W., Wax, L. M., and Simmons, F. W. 2007. Tillage, cropping system, and soil depth effects on common waterhemp (Amaranthus rudis) seed-bank persistence. Weed Sci. 55:235239.CrossRefGoogle Scholar
Steckel, L. E. 2007. The dioecious Amaranths spp.: here to stay. Weed Technol. 21:567570.CrossRefGoogle Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.Google Scholar
Webster, T. M., Burton, M. G., Culpepper, A. S., Flanders, J. T., Grey, T. L., and York, A. C. 2006. Tropical spiderwort (Commelina benghalensis) control and emergence patterns in preemergence herbicide systems. J. Cotton Sci. 10:6875.Google Scholar
Webster, T. M., Burton, M. G., Culpepper, A. S., York, A. C., and Prostko, E. P. 2005. Tropical spiderwort (Commelina benghalensis): a tropical invader threatens agroecosystems of the southern United States. Weed Technol. 19:501508.CrossRefGoogle Scholar
Webster, T. M., Faircloth, W. H., Flanders, J. T., Prostko, E. P., and Grey, T. L. 2007. The critical period of Benghal dayflower (Commelina benghalensis) control in peanut. Weed Sci. 55:359364.CrossRefGoogle Scholar
Wilcut, J., York, A. C., Grichar, W. J., and Wehtje, G. R. 1995. The biology and management of weeds in peanut (Arachis hoypgaea). Pages 207224. In Pattee, H. E., and Stalker, H. T., eds. Advances in Peanut Science. Stillwater, OK American Peanut Research and Education Society.Google Scholar
Williams, E. J. and Drexler, J. S. 1981. A non-destructive method for determining peanut pod maturity. Peanut Sci. 8:134141.CrossRefGoogle Scholar
Wilson, A. K. 1981. Commelinaceae—a review of the distribution, biology and control of the important weeds belonging to this family. Trop. Pest Manag. 27(3):405418.CrossRefGoogle Scholar
Wise, A. M., Grey, T., Prostko, E., Vencill, W., and Webster, T. 2009. Establishing the geographical distribution and level of acetolactate synthase resistance of Palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technol. 23:214220.CrossRefGoogle Scholar