Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T05:46:41.099Z Has data issue: false hasContentIssue false

Wild Buckwheat (Polygonum convolvulus) Interference in Sugarbeet

Published online by Cambridge University Press:  20 January 2017

Dennis C. Odero*
Affiliation:
Department of Plant Sciences, University of Wyoming, Laramie, WY 82071
Abdel O. Mesbah
Affiliation:
Department of Plant Sciences, University of Wyoming, Laramie, WY 82071
Stephen D. Miller
Affiliation:
Department of Plant Sciences, University of Wyoming, Laramie, WY 82071
Andrew R. Kniss
Affiliation:
Department of Plant Sciences, University of Wyoming, Laramie, WY 82071
*
Corresponding author's E-mail: odero@uwyo.edu.

Abstract

Field studies were conducted in Powell, WY in 2006 and 2007 to determine the influence of season-long interference of various wild buckwheat densities and duration of interference on sugarbeet. Percent sucrose content was not affected by wild buckwheat interference. Root and sucrose yield loss per hectare increased as wild buckwheat density increased. The estimated percent yield loss as wild buckwheat density approaches infinity was 64 and 61% for root and sucrose yield loss, respectively. The estimated percent yield loss per unit weed density at low weed densities was 6% for both root and sucrose yield loss. Greater durations of wild buckwheat interference had a negative effect on sugarbeet root yield. The critical timing of weed removal (CTWR) to avoid 5 and 10% root yield loss was 32 and 48 d after sugarbeet emergence (DAE), respectively. These results show that wild buckwheat is competitive with sugarbeet and should be managed appropriately to forestall any negative effects on sugarbeet root and sucrose yield.

Estudios de campo realizados en Powell, WY en los años 2006 y 2007 fueron dirigidos para determinar la influenza de larga estación de interferencia de varias densidades de polygonum convolvulus y la duración de interferencia en la remolacha azucarera. El contenido de sacarosa no fue afectado por la interferencia de polygonum convolvulus. La raíz y la pérdida de producción de sacarosa por hectárea se incrementaron tanto como la densidad de polygonum convolvulus se incrementó. El porcentaje estimado de pérdida en la producción mientras la densidad de la polygonum convolvulus se acercó al infinito, fue de un 64 y un 61%, para la raíz y la pérdida de la producción de sacarosa respectivamente. El porcentaje estimado de pérdida en la producción por unidad de densidad de baja maleza fue del 6% para ambos, raíz y la pérdida de producción de sacarosa. Un mayor intervalo de interferencia de la polygonum convolvulus tuvo un efecto negativo en la producción de la remolacha azucarera. El tiempo crítico de remoción de maleza (CTWR) para evitar el 5 y el 10% de pérdida en la producción de la remolacha azucarera fue de 32 y 48 días después de la emergencia de ésta. Estos resultados muestran que la polygonum convolvulus es competitiva con la remolacha azucarera y debe ser manejado apropiadamente para evitar cualquier efecto negativo en la raíz y en la producción de sacarosa.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Blackshaw, R. E. and Lindwall, C. W. 1995. Management systems for conservation fallow on the southern Canadian prairies. Can. J. Plant Sci 75:9399.Google Scholar
Boström, U., Milberg, P., and Fogelfors, H. 2003. Yield loss in spring-sown cereals related to the weed flora in the spring. Weed Sci 51:418424.Google Scholar
Bukun, B. 2004. The critical period for weed control in cotton in Turkey. Weed Sci 44:404412.Google Scholar
Cousens, R. 1985. A simple model relating yield loss to weed density. Ann. Appl. Biol 107:239252.Google Scholar
du Croix Sissons, M. J., Van Acker, R. C., Derksen, D. A., and Thomas, A. G. 2000. Depth of seedling recruitment of five weed species measured in situ in conventional- and zero-tillage fields. Weed Sci 48:327332.Google Scholar
Everman, W. J., Burke, I. C., Clewis, S. B., Thomas, W. E., and Wilcut, J. W. 2008. Critical period of grass vs. broadleaf weed interference in peanut. Weed Technol 22:6873.Google Scholar
Fabricius, L. J. and Nalewaja, J. D. 1968. Competition between wheat and wild buckwheat. Weed Sci 16:204208.Google Scholar
Forsberg, D. E. and Best, K. F. 1964. The emergence and development of wild buckwheat (Polygonum convolvulus). Can. J. Plant Sci 44:100103.Google Scholar
Friesen, G. and Shebeski, L. H. 1960. Economic losses caused by weed competition in Manitoba grain fields. I. Weed species, their relative abundance and their effect on crop yields. Can. J. Plant Sci 40:457467.Google Scholar
Gruenhagen, R. D. and Nalewaja, J. D. 1969. Competition between flax and wild buckwheat. Weed Sci 17:380384.Google Scholar
Halford, C., Hamill, A. S., Zhang, J., and Doucet, C. 2001. Critical period of weed control in no-till soybean (Glycine max) and corn (Zea mays). Weed Technol 15:737744.Google Scholar
Harper, J. L. 1977. Population Biology of Plants. New York: Academic Press. 892 p.Google Scholar
Hume, L., Martinez, J., and Best, K. 1983. The biology of Canadian weeds. 60. Polygonum convolvulus L. Can. J. Plant. Sci 63:959971.Google Scholar
Knezevic, S. Z., Evans, S. P., and Mainz, M. 2003. Row spacing influences the critical timing of weed removal in soybean (Glycine max). Weed Technol 17:666673.Google Scholar
Knezevic, S. Z., Evans, S. P., Van Acker, R. C., and Lindquist, J. L. 2002. Critical period for weed control: the concept and data analysis. Weed Sci 50:773786.Google Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.Google Scholar
Mesbah, A., Miller, S. D., Fornstrom, K. J., and Legg, D. E. 1994. Kochia (Kochia scoparia) and green foxtail (Setaria viridis) interference in sugarbeets (Beta vulgaris). Weed Technol 8:754759.Google Scholar
Mesbah, A., Miller, S. D., Fornstrom, K. J., and Legg, D. E. 1995. Wild mustard (Brassica kaber) and wild oat (Avena fatua) interference in sugarbeets (Beta vulgaris L.). Weed Technol 9:4952.Google Scholar
Messersmith, C. G. and Nalewaja, J. D. 1969. Competition between wheat and wild buckwheat. Weed Sci. Soc. Am. Abstract No. 15.Google Scholar
Milford, G. F. J. 1973. The growth and development of the storage root of sugar beet. Ann. Appl. Biol 75:427438.Google Scholar
Nalewaja, J. D. 1964. Competition of wild buckwheat in field crops. Pages 47. in. Proceedings of the 20th North Central Weed Control Conference. East Lansing, MI North Central Weed Science Society.Google Scholar
Norsworthy, J. K. and Oliveira, M. J. 2004. Comparison of the critical period for weed control in wide- and narrow-row corn. Weed Sci 52:802807.Google Scholar
Paolini, R., Principi, M., Froud-Williams, R. J., Del Puglia, S., and Biancardi, E. 1999. Competition between sugarbeet and Sinapsis arvensis and Chenopodium album, as affected by timing of nitrogen fertilization. Weed Res 39:425440.Google Scholar
Park, S. E., Benjamin, L. R., and Watkinson, A. R. 2003. The theory and application of plant competition models: an agronomic perspective. Ann. Bot 92:741748.Google Scholar
Ritz, C. and Streibig, J. C. 2005. Bioassa analysis using R. J. Statistical Software. Journal 12:122.Google Scholar
Schweizer, E. E. 1981. Broadleaf weed interference in sugarbeets (Beta vulgaris). Weed Sci 29:128133.Google Scholar
Schweizer, E. E. 1983. Common lambsquarters (Chenopodium album) interference in sugarbeets (Beta vulgaris). Weed Sci 31:58.Google Scholar
Schweizer, E. E. and Bridge, L. D. 1982. Sunflower (Helianthus annuus) and velvetleaf (Abutilon theophrasti) interference in sugarbeets (Beta vulgaris). Weed Sci 30:514519.Google Scholar
Schweizer, E. E. and Lauridson, T. C. 1985. Powell amaranth (Amaranthus powellii) interference in sugarbeet (Beta vulgaris). Weed Sci 33:518520.Google Scholar
Schweizer, E. E. and May, M. J. 1993. Weeds and weed control. Pages 485519. In Cooke, D. A. and Scott, R. K. The Sugar Beet Crop: Science into Practice. London: Chapman and Hall.Google Scholar
Scott, R. K. and Wilcockson, S. J. 1976. Weed biology and the growth of sugar beet. Ann. Appl. Bio 83:331335.Google Scholar
Stevenson, F. C. and Wright, A. T. 1996. Seeding rate and row spacing affect flax yields and weed interference. Can. J. Plant Sci 76:537544.Google Scholar
Weatherspoon, D. M. and Schweizer, E. E. 1969. Competition between kochia and sugarbeets. Weed Sci 17:464467.Google Scholar