Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T12:36:02.431Z Has data issue: false hasContentIssue false

Yellow Nutsedge Control and Reduced Tuber Production with S-metolachlor, Halosulfuron plus Dicamba, and Glyphosate in Furrow-Irrigated Corn

Published online by Cambridge University Press:  20 January 2017

Joel Felix*
Affiliation:
Oregon State University/Malheur Experiment Station, 595 Onion Avenue, Ontario, OR 97914
George Newberry
Affiliation:
Gowan Company,1411 S. Arcadia Street, Boise, ID 83705
*
Corresponding author's E-mail: joel.felix@oregonstate.edu

Abstract

Yellow nutsedge is an important weed problem in furrow-irrigated fields in the Treasure Valley of eastern Oregon and southwestern Idaho. Field studies were conducted in 2008 and 2009 to evaluate the effect of PPI S-metolachlor or EPTC followed by POST halosulfuron and dicamba plus glyphosate or glyphosate alone on foliar yellow nutsedge control and tuber production in corn. Corn plant height at 8 and 24 d after treatment (DAT) was reduced 20 and 17%, respectively, in POST herbicides alone compared with PPI plus POST herbicide treatments. Yellow nutsedge control at 8 DAT averaged 78% for treatments that included PPI application of EPTC or S-metolachlor 1,600 g ai ha−1 followed by halosulfuron plus dicamba (35 plus 155 g ha−1 or 70 plus 310 g ha−1) plus glyphosate 785 g ha−1 compared with POST treatments alone (49%). The control at 24 DAT was 84% for treatments that contained halosulfuron plus dicamba compared with 73% for POST glyphosate alone. Yellow nutsedge tubers were reduced 56 to 68% among treatments at the end of 2008. Tuber reduction in 2009 was greater with treatments that included PPI herbicides followed by sequential halosulfuron plus dicamba (35 plus 155 g ha−1) plus glyphosate compared with glyphosate alone. Corn yield reflected the level of yellow nutsedge control and early-season weed interference. Treatments that included PPI herbicides had an average yield of 8.2 T ha−1 compared with 6.6 T ha−1 with sequential glyphosate alone. There was a correlation between percent foliar control and the number of yellow nutsedge tubers produced at the end of each year. Application of PPI herbicides followed by POST halosulfuron plus dicamba (35 plus 155 g ha−1 or 70 plus 155 g ha−1) plus glyphosate improved yellow nutsedge control, reduced early corn–weed competition, and produced the highest corn yield under furrow-irrigated conditions.

Cyperus esculentus es una maleza problemática importante en campos irrigados por surco en el valle Treasure del este de Oregón y suroeste de Idaho. En 2008 y 2010 se realizaron estudios de campo para evaluar el efecto de S—metolachlor incorporado antes de la siembra (PPI) o EPTC seguido por aplicaciones POST de halosulfuron y dicamba más glifosato o glifosato solo en el control foliar de C. esculentus y la producción de tubérculos, en el cultivo de maíz. La altura de las plantas de maíz a los 8 y 24 DAT se redujo 20 y 17%, respectivamente, en la aplicación de herbicidas POST solos, en comparación con los tratamientos PPI más POST. El control de C. esculentus a los 8 DAT promedió 78% para los tratamientos que incluyeron aplicación PPI de EPTC o S-metolachlor 1,600 g ia ha−1 seguido de halosulfuron más dicamba (35 más 155 g ha−1 o 70 más 310 g ha−1) más glifosato 785 g ha−1, en comparación con solo tratamientos POST (49%). El control a los 24 DAT fue de 84% para tratamientos que contenían halosulfuron más dicamba comparado a 73% con solo glifosato POST. La reducción en el número de tubérculos de C. esculentus fue de 56 a 68% entre los tratamientos al final de 2008. La reducción en el número de tubérculos en 2009 fue mayor con los tratamientos que incluyeron herbicidas PPI seguidos secuencialmente de halosulfuron más dicamba (35 más 155 g ha−1) más glifosato comparados a solo glifosato. El rendimiento del maíz reflejó el nivel de control de C. esculentus y la interferencia de la maleza temprano en el ciclo del cultivo. Los tratamientos que incluyeron herbicidas PPI tuvieron un rendimiento promedio de 8.2 T ha−1 comparado a 6.6 T ha−1 con solo glifosato secuencial. Hubo una correlación entre el porcentaje de control foliar y el número de tubérculos de C. esculentus producidos al fin de cada año. La aplicación de herbicidas PPI seguida de aplicaciones POST de halosulfuron más dicamba (35 más 155 g ha−1 o 70 más 155 g ha−1) más glifosato mejoró el control de C. esculentus, redujo la competencia de la maleza en la etapa temprana del maíz y produjo el más alto rendimiento del maíz en condiciones de irrigación por surcos.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ackley, J. A., Wilson, H. P., and Hines, T. E. 1996. Yellow nutsedge (Cyperus esculentus) control POST with acetolactate synthase-inhibiting herbicides. Weed Technol. 10:576580.Google Scholar
Akin, D. S. and Shaw, D. R. 2001. Purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) control in glyphosate-tolerant soybean (Glycine max). Weed Technol. 15:564570.CrossRefGoogle Scholar
Anderson, W. P. 1999. Purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus). Pages 5766 in Perennial Weeds. Ames, IA Iowa State University Press.Google Scholar
Anonymous. 2003. Yukon® herbicide label. Yuma, AZ Gowan Company.Google Scholar
Bosnic, A. C. and Swanton, C. J. 1997. Influence of barnyardgrass (Echinochloa crus-galli) time of emergence and density on corn (Zea mays). Weed Sci. 45:276282.Google Scholar
Boydston, R. A. 2004. Managing volunteer potato (Solanum tuberosum) in field corn (Zea mays) with carfentrazone-ethyl and dicamba. Weed Technol. 18:8387.Google Scholar
Burke, I. C., Thomas, W. E., Allen, J. R., Collins, J., and Wilcut, J. W. 2008. A comparison of weed control in herbicide-resistant, herbicide-tolerant, and conventional corn. Weed Technol. 22:571579.Google Scholar
Damalas, C. A. and Eleftherohorinos, I. G. 2001. Dicamba and atrazine antagonism on sulfonylurea herbicides used for johnsongrass (Sorghum halepense) control in corn (Zea mays). Weed Technol. 15:6267.Google Scholar
DeFelice, M. S. 2002. Yellow nutsedge (Cyperus esculentus L.): snack food of the gods. Weed Technol. 16:901907.CrossRefGoogle Scholar
Dermiyati, S. K. and Yamamoto, I. 1997a. Degradation of the herbicide halosulfuron-methyl in two soils under different environmental conditions. J. Pestic. Sci. 22:282287.Google Scholar
Dermiyati, S. K. and Yamamoto, I. 1997b. Relationships between soil properties and sorption behavior of the herbicide halosulfuron-methyl in selected Japanese soils. J. Pestic. Sci. 22:288292.Google Scholar
Felix, J. and Ishida, J. Clinton Shock. 2007. Yellow nutsedge tuber production in response to depth of emergence. Malheur Experiment Station Annual Report 2008. Oregon State University Special Report 1094. Pp. 185190.Google Scholar
Ferrell, J. and Witt, W. W. 2002. Comparison of glyphosate with other herbicides for weed control in corn (Zea mays): efficacy and economics. Weed Technol. 16:701706.CrossRefGoogle Scholar
Fischer, D. W. and Harvey, R. G. 2002. Yellow nutsedge (Cyperus esculentus) and annual weed control in GR field corn (Zea mays). Weed Technol. 16:482487.Google Scholar
Franetovich, L. M. and Peeper, T. F. 1995. Quinclorac for cheat (Bromus secalinus) control in winter wheat (Triticum aestivum). Weed Technol. 9:131140.Google Scholar
Franssen, A. S. and Kells, J. J. 2007. Common dandelion (Taraxacum officinale) control with postemergence herbicides in no-tillage glufosinate-resistant corn. Weed Technol. 21:1417.Google Scholar
Gower, S. A., Loux Cardina, M. M. J., et al. 2003. Effect of postemergence glyphosate application timing on weed control and grain yield in glyphosate-resistant corn: results of a 2-yr multistate study. Weed Technol. 17:821828.CrossRefGoogle Scholar
Grey, T. L., Culpepper, A. S., and Webster, T. M. 2007. Residual herbicide dissipation from soil covered with low-density polyethylene mulch or left bare. Weed Sci. 55:638643.CrossRefGoogle Scholar
Hahn, R. R. 1997. Effect of timing on postemergence yellow nutsedge (Cyperus esculentus L.) control in field corn. Weed Sci. Soc. Am. 37:8. [Abstract].Google Scholar
Hall, M. R., Swanton, C. J., and Anderson, G. W. 1992. The critical period for weed control in grain corn (Zea mays). Weed Sci. 40:441447.Google Scholar
Holm, L., Plucknett, D., Pancho, J., and Herberger, J. 1977. The World's Worst Weeds: Distribution and Biology. Honolulu University of Hawaii Press. 609 p.Google Scholar
Johnson, W. C. III, and Mullinix, B. G. Jr. 1996. Weed control and crop injury in cucumber with halosulfuron-methyl. Weed Sci. Soc. Am. 36:18. [Abstract].Google Scholar
Kalnay, P. A. and Glenn, S. 2000. Translocation of nicosulfuron and dicamba in hemp dogbane (Apocynum cannabinum). Weed Technol. 14:476479.CrossRefGoogle Scholar
Loux, M. M., Dobbels, A. F., Johnson, W. G., and Young, B. G. 2011. Effect of residual herbicide and postemergence application timing on weed control and yield in glyphosate-resistant corn. Weed Technol. 25:1924.Google Scholar
Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. Jr. 2001. Interference of Palmer amaranth in corn. Weed Sci. 49:202208.Google Scholar
Molin, W. T., Maricic, A. A., Khan, R. A., and Mancino, C. F. 1999. Effect of MON 1237 on the growth and tuber viability of purple nutsedge (Cyperus rotundus). Weed Technol. 13:15.Google Scholar
Nelson, K. A. and Renner, K. A. 2002. Yellow nutsedge (Cyperus esculentus) control and tuber production with glyphosate and ALS-inhibiting herbicides. Weed Technol. 16:512519.Google Scholar
Ngouajio, M. and Hagood, E. S. 1993. Weed control in corn (Zea mays) with primisulfuron as influenced by rate, timing, and herbicide combinations. Weed Technol. 7:6569.Google Scholar
Nurse, R. E., Hamill, A. S., Swanton, C. J., Tardif, F. J., and Sikkema, P. H. 2007. Weed control and yield response to foramsulfuron in corn. Weed Technol. 21:453458.Google Scholar
Obrigawitch, T., Abernathy, J. R., and Gipson, J. R. 1980. Response of yellow (Cyperus esculentus) and purple (Cyperus rotundus) nutsedge to metolachlor. Weed Sci. 28:708715.Google Scholar
Parker, R. G., York, A. C., and Jordan, D. L. 2006. Weed control in glyphosate resistant corn as affected by preemergence herbicide and timing of postemergence herbicide application. Weed Technol. 20:564570.Google Scholar
Ransom, C. V., Rice, C. A., and Ishida, J. K. 2003. Yellow nutsedge competition in dry bulb onion production. OSU Malheur Experiment Station Special Rep. 1055:9799. Corvallis, OR Oregon State University Malheur Experiment Station.Google Scholar
SAS Institute Inc. 2008. SAS/STAT® 9.2 User's Guide. Cary, NC SAS Institute Inc.Google Scholar
Schippers, P., Borg, S. J. T., Van Groenendael, J. M., and Habekotte, B. 1993. What makes Cyperus esculentus (yellow nutsedge) an invasive species? A spatial model approach. Proc. Brighton Crop Prot. Conf. 495504.Google Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America. Pp. 7678.Google Scholar
Shock, C. C., Ishida, J., and Feibert, E. 2006. Yellow nutsedge nutlet production in response to nutlet planting depth. Oregon State University Agricultural Experiment Station Special Report 1075:160162.Google Scholar
Sprankle, P. L., Flint, J. L., Miller, K. J., Peters, T. J., and Travers, J. N. 1992. Halosulfuron: a new herbicide for yellow nutsedge control in corn. Proc. N. Cent. Weed Sci. Soc. 47:39.Google Scholar
Stephenson, D. O. IV, Bond, J. A., Walker, E. R., Bararpour, M. T., and Oliver, L. R. 2004. Evaluation of mesotrione in Mississippi delta corn production. Weed Technol. 18:11111116.Google Scholar
Stoller, E. W., Wax, L. M., and Matthiesen, R. L. 1975. Response of yellow nutsedge and soybeans to bentazon, glyphosate, and perfluidone. Weed Sci. 23:215221.Google Scholar
Thomas, W. E., Burke, I. C., and Wilcut, J. W. 2004a. Weed management in glyphosate-resistant corn with glyphosate, halosulfuron, and mesotrione. Weed Technol. 18:826834.Google Scholar
Thomas, W. E., Burke, I. C., and Wilcut, J. W. 2004b. Weed management in glyphosate-resistant corn with glyphosate and halosulfuron. Weed Technol. 18:10491057.CrossRefGoogle Scholar
[USDA] U.S. Department of Agriculture. 2005. Crop production and agricultural chemical usage in field crops. Agricultural Statistics Board, NASS, and USDA. http://www.usda.gov/nass/. Accessed: July 10, 2011.Google Scholar
Vencill, W. K., Richburg, J. S. III, Wilcut, J. W., and Hawf, L. R. 1995. Effect of MON-12037 on purple (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus). Weed Technol. 9:148152.Google Scholar
Webster, T. M. 2005. Mulch type affects growth and tuber production of yellow nutsedge (Cyperus esculentus) and purple nutsedge (Cyperus rotundus). Weed Sci. 53:834838.CrossRefGoogle Scholar
Webster, T. M. and Coble, H. D. 1997. Purple nutsedge (Cyperus rotundus) management in corn (Zea mays) and cotton (Gossypium hirsutum) rotations. Weed Technol. 11:543548.Google Scholar