Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T07:50:02.710Z Has data issue: false hasContentIssue false

Yellow Nutsedge Interference in Polyethylene-Mulched Bell Pepper as Influenced by Turnip Soil Amendment

Published online by Cambridge University Press:  20 January 2017

Sanjeev K. Bangarwa
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
John D. Mattice
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Edward E. Gbur
Affiliation:
Agricultural Statistics Laboratory, University of Arkansas, 101 Agricultural Annex Building, Fayetteville, AR 72701
*
Corresponding author's E-mail: jnorswor@uark.edu

Abstract

Methyl bromide has been widely used as a broad-spectrum fumigant for weed control in polyethylene-mulched bell pepper. However, because of environmental hazards, the phase-out of methyl bromide requires development of alternative weed management strategies. Brassicaceae plants produce glucosinolates which are hydrolyzed to toxic isothiocyanates following tissue decomposition, and therefore can be used as a cultural strategy. Field experiments were conducted in 2007 and 2009 to study the influence of soil amendment (‘Seventop’ turnip cover crop vs. fallow) and the effect of initially planted yellow nutsedge tuber density (0, 50, and 100 tubers m−2) on the interference of yellow nutsedge in raised-bed polyethylene-mulched bell pepper. Total glucosinolate production by the turnip cover crop was 12,635 and 22,845 µmol m−2 in 2007 and 2009, respectively, and was mainly contributed by shoots. In general, soil amendment with the turnip cover crop was neither effective in reducing yellow nutsedge growth and tuber production nor in improving bell pepper growth and yield compared to fallow plots at any initial tuber density. Averaged over cover crops, increasing initial tuber density from 50 to 100 tubers m−2 increased yellow nutsedge shoot density, shoot dry weight, and tuber production ≥ 1.4 times. However, increased tuber density had minimal impact on yellow nutsedge height and canopy width. Compared to weed-free plots, interference of yellow nutsedge reduced bell pepper dry weight and marketable yield ≥ 42 and ≥ 47%, respectively. However, bell pepper dry weight and yield reduction from 50 and 100 tubers m−2 were not different. Light was the major resource for which yellow nutsedge competed with bell pepper. Yellow nutsedge shoots grown from initially planted 50 and 100 tubers m−2 caused up to 48 and 67% light interception in bell pepper, respectively. It is concluded that yellow nutsedge interference from initial densities of 50 and 100 tubers m−2 are equally effective in reducing bell pepper yield and that soil biofumigation with turnip is not a viable management option for yellow nutsedge at these densities.

El methyl bromide ha sido ampliamente usado como fumigante de amplio espectro para el control de malezas en el cultivo de pimiento con cobertura de polietileno. Sin embargo, la eliminación gradual del uso de methyl bromide debido a riesgos ambientales, requerirá del desarrollo de estrategias alternativas para el manejo de malezas. Las plantas de la familia Brassicaceae producen glucosinolates, los cuales son hidrolizados a isothiocyanates, después de la degradación de su tejido. Por lo tanto pueden ser usados como estrategia de control cultural. Se llevaron a cabo experimentos de campo en 2007 y 2009 para estudiar la influencia de enmiendas de suelo (Brassica rapa “Seventop” vs. Barbecho) y el efecto de la densidad de tubérculos de Cyperus esculentus plantada al inicio (0, 50 y 100 tubérculos m2) en la interferencia de esta maleza en el cultivo de pimiento en camas con cobertura de polietileno. La producción total de glucosinolates producida por B. rapa fue 12,635 y 22,845 µmol m−2 en 2007 y 2009, respectivamente, y fue aportada principalmente por el tejido aéreo de las plantas. En general, en comparación con el tratamiento en barbecho en cualquiera de las densidades de tubérculos, el uso de la enmienda de B. rapa no fue efectivo para reducir el crecimiento de C. esculentus o la producción de tubérculos, ni para mejorar el crecimiento y el rendimiento del pimiento. Promediando los tratamientos de coberturas, al aumentar la densidad inicial de tubérculos de 50 a100 m−2, se incrementó la densidad de plantas, el peso seco de la parte aérea y la producción de tubérculos en ≥1.4 veces. Sin embargo, el incremento de la densidad de tubérculos tuvo un impacto mínimo en la altura y ancho del dosel de C. esculentus. Comparado con los lotes libres de maleza, la interferencia de C. esculentus disminuyó el peso seco del pimiento y el rendimiento comercial ≥ 42 y ≥ 47%, respectivamente, aunque no hubo diferencias en estas variables entre los tratamientos 50 y 100 tubérculos por m−2. La luz solar fue el mayor recurso por el cual C. esculentus compitió con el pimiento. Las plantas de esta maleza crecidas a partir de las densidades iniciales de 50 y 100 tubérculos m−2, causaron una intercepción de luz de hasta 48 y 67%, respectivamente. Se concluye que la interferencia causada por densidades iniciales de 50 y 100 tubérculos de C. esculentus m−2, son igualmente efectivas en reducir los rendimientos del pimiento y que la biofumigación con B. rapa no es una opción viable para el manejo de esta maleza a estas densidades.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aldrich, R. J. 1987. Predicting crop yield reductions from weeds. Weed Technol. 1:199206.Google Scholar
Austerweil, M., Steiner, B., and Gamliel, A. 2006. Permeation of soil fumigants through agricultural plastic films. Phytoparasitica 34:491501.Google Scholar
Bangarwa, S. K. 2010. Integrated Strategies for Purple (Cyperus rotundus L.) and Yellow Nutsedge (Cyperus esculentus L.) Management in Tomato and Bell Pepper. Ph.D Dissertation. Fayetteville, AR University of Arkansas.Google Scholar
Bangarwa, S. K., Norsworthy, J. K., and Gbur, E. E. 2009. Integration of a Brassicaceae cover crop with herbicides in plasticulture tomato. Weed Technol. 23:280286.CrossRefGoogle Scholar
Bangarwa, S. K., Norsworthy, J. K., Jha, P., and Malik, M. S. 2008. Purple nutsedge (Cyperus rotundus) management in an organic production system. Weed Sci. 56:606613.Google Scholar
Brown, P. D. and Morra, M. J. 1995. Glucosinolate-containing plant tissues as bioherbicides. J. Agric. Food Chem. 43:30703074.Google Scholar
Campbell, C. R. 1992. Determination of total nitrogen in plant tissue by combustion. Pages 2022. In Plank, C. O., ed. Plant Analysis Reference Procedures for the Southern U.S. Athens, GA University of Georgia.Google Scholar
Chase, C. A., Sinclair, T. R., Shilling, D. G., Gilreath, J. P., and Locascio, S. J. 1998. Light effects on rhizome morphogenesis in nutsedges (Cyperus spp.): implications for control by soil solarization. Weed Sci. 46:575580.Google Scholar
Cousens, R. 1985. A simple model relating yield loss to weed density. Ann. Appl. Biol. 107:239252.Google Scholar
Cousens, R. 1991. Aspects of design and interpretation of competition (interference) experiments. Weed Technol. 5:664675.Google Scholar
Drost, D. C. and Doll, J. D. 1980. The allelopathic effect of yellow nutsedge (Cyperus esculentus) on corn (Zea mays) and soybeans (Glycine max). Weed Sci. 28:229233.Google Scholar
Duniway, J. M. 2002. Status of chemical alternatives of methyl bromide for pre-plant fumigation in soil. Phytopathology 92:13371343.Google Scholar
Eberlein, C. V., Morra, M. J., Guttieri, M. J., Brown, P. D., and Brown, J. 1998. Glucosinolate production by five field-grown Brassica napus cultivars used as green manures. Weed Technol. 12:712718.Google Scholar
Fausey, J. C., Kells, J. J., Swinton, S. M., and Renner, K. A. 1997. Giant foxtail (Setaria faberi) interference in nonirrigated corn (Zea mays). Weed Sci. 45:256260.Google Scholar
Fennimore, S. A. and Doohan, D. J. 2008. The challenges of specialty crop weed control, future directions. Weed Technol. 22:364372.Google Scholar
Fenwick, G. R., Heaney, R. K., and Mullin, W. J. 1983. Glucosinolates and their breakdown products in food and food plants. Crit. Rev. Food Sci. Nutr. 18:123201.Google Scholar
Graham, H. A. H. and Decoteau, D. R. 1995. Regulation of bell pepper seedling growth with end of day supplemental fluorescent light. Hortscience 30:487489.Google Scholar
Gimsing, A. L. and Kirkegaard, J. A. 2006. Glucosinolate and isothiocyanate concentration in soil following incorporation of Brassica biofumigants. Soil Biol. Biochem. 38:22552264.CrossRefGoogle Scholar
Gimsing, A. L. and Kirkegaard, J. A. 2009. Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochem. Rev. 8:299310.Google Scholar
Haramoto, E. R. and Gallandt, E. R. 2005. Brassica cover cropping: I. Effects on weed and crop establishment. Weed Sci. 53:695701.Google Scholar
Hartwig, N. L. and Ammon, H. U. 2002. Cover crops and living mulches. Weed Sci. 50:688699.Google Scholar
Holmes, G. J., and Kemble, J. M., eds. 2010. Vegetable Crop Handbook for the Southeastern United States. 11th ed. Lincolnshire, IL Vance.Google Scholar
Hunt, R. 1988. Analysis of growth and resource allocation. Weed Res. 28:459463.Google Scholar
Jangaard, N. O., Sckerl, M. M., and Schieferstein, R. H. 1971. The role of phenolics and abscisic acid in nutsedge tuber dormancy. Weed Sci. 19:1720.Google Scholar
Jones, J. B. and Case, V. W. 1990. Sampling, handling, and analyzing plant tissue samples. Pages 389428. In Westerman, R. L., ed. Soil Testing and Plant Analysis. 3rd ed. Madison, WI Soil Science Society of America.Google Scholar
Jordan-Molero, J. E. and Stoller, E. W. 1978. Seasonal development of yellow and purple nutsedges (Cyperus esculentus and C. rotundus) in Illinois. Weed Sci. 26:614618.Google Scholar
Keeley, P. E. 1987. Interference and interaction of purple and yellow nutsedge (Cypreus rotundus and C. esculentus) with crops. Weed Technol. 1:7481.Google Scholar
Knake, E. L. 1972. Effect of shade on giant foxtail. Weed Sci. 20:588592.Google Scholar
Kumar, V., Brainard, D. C., and Bellinder, R. R. 2009. Effects of spring-sown cover crops on establishment and growth of hairy galinsoga (Galinsoga ciliata) and four vegetable crops. Hortscience 44:730736.Google Scholar
Mattner, S. W., Porter, I. J., Gounder, R. K., Shanks, A. L., Wren, D. J., and Allen, D. 2008. Factors that impact on the ability of biofumigants to suppress fungal pathogens and weeds of strawberry. Crop Prot. 27:11651173.Google Scholar
Monaco, T. J., Weller, S. C., and Ashton, F. M. 2002. Weed Science: Principles and Practices. 4th ed. New York Wiley. Pp. 1819.Google Scholar
Morales-Payan, J. P. 1999. Interference of Purple and Yellow Nutsedge (Cyperus rotundus L. and Cyperus esculentus L.) with Tomato (Lycopersicon esculentum Mill.). Ph.D Dissertation. Gainesville, FL University of Florida.Google Scholar
Morales-Payan, J. P., Santos, B. M., and Stall, W. M. 1997a. Effect of increasing purple nutsedge densities (Cyperus rotundus) on cilantro (Coriandrum sativum) yield. Proc. Fla. State Hortic. Soc. 110:318320.Google Scholar
Morales-Payan, J. P., Santos, B. M., Stall, W. M., and Bewick, T. A. 1997b. Effect of purple nutsedge (Cyperus rotundus) on tomato (Lycopersicon esculentum) and bell pepper (Capsicum annum) vegetative growth and fruit yield. Weed Technol. 11:672676.Google Scholar
Motis, T. N., Locascio, S. J., and Gilreath, J. P. 2001. Yellow nutsedge interference effects on fruit weight of polyethylene-mulched bell pepper. Proc. Fla. State Hortic. Soc. 114:268271.Google Scholar
Motis, T. N., , J. P., Locascio, S. J., and Gilreath, J. P. 2004. Critical yellow nutsedge-free period for polyethylene-mulched bell pepper. Hortscience 39:10451049.CrossRefGoogle Scholar
Motis, T. N., Locascio, S. J., Gilreath, J. P., and Stall, W. M. 2003. Season-long interference of yellow nutsedge (Cyperus esculentus) with polyethylene-mulched bell pepper (Capsicum annuum). Weed Technol. 17:543549.Google Scholar
Munter, R. C. and Grande, R. A. 1981. Plant analysis and soil extract by ICP-atomic emission spectrometry. Pages 653672. In Branes, R. M., ed. Developments in Atomic Plasma Spectrochemical Analysis. London Heyden and Son.Google Scholar
Norsworthy, J. K., Brandengerger, L., Burgos, N., and Riley, M. 2005. Weed suppression in Vigna unguiculata with a spring-seeded Brassicaceae green manure. Crop Prot. 24:441447.CrossRefGoogle Scholar
Norsworthy, J. K., Malik, M. S., Jha, P., and Riley, M. B. 2007. Suppression of Digitaria sanguinalis and Amaranthus palmeri using autumn-sown glucosinolate-producing cover crops in organically grown bell pepper. Weed Res. 47:425432.Google Scholar
Norsworthy, J. K. and Meehan, J. T. 2005. Wild radish-amended soil effects on yellow nutsedge (Cyperus esculentus) interference with tomato and bell pepper. Weed Sci. 53:7783.Google Scholar
Olson, S. M., Simonne, E. H., Stall, W. M., Vallad, G. E., Webb, S. E., McAvoy, E. J., and Smith, S. A. 2010. Pepper production in Florida. Pages 213215. In Olson, S. M. and Santos, B. M., eds. Vegetable Production Handbook for Florida 2010–2011. Gainesville, FL University of Florida.Google Scholar
Patterson, D. T. 1998. Suppression of purple nutsedge (Cyperus rotundus) with polyethylene film mulch. Weed Technol. 12:275280.CrossRefGoogle Scholar
Pereira, W. 2003. Weed interference as related to vegetable crop management systems. Acta Hort. 607:227235.Google Scholar
Radosevich, S. R., Holt, J. S., and Ghersa, C. 1997. Weed Ecology: Implications for Vegetation Management. 2nd ed. New York Wiley. Pp. 165166.Google Scholar
Santos, B. M., Morales-Payan, J. P., Stall, W. M., Bewick, T. A., and Shilling, D. G. 1997. Effects of shading on the growth of nutsedges (Cyperus spp.). Weed Sci. 45:670673.Google Scholar
Sarwar, M. and Kirkegaard, J. A. 1998. Biofumigation potential of brassicas. II—Effect of environment and ontogeny on glucosinolate production and implications for screening. Plant Soil. 201:91101.Google Scholar
Smelt, J. H., Crum, S. J. H., and Teunissen, W. H. 1989. Accelerated transformation of the fumigant methyl isothiocyanate in soil after repeated applications of metam sodium. J. Environ. Sci. Health. 24:437455.Google Scholar
Stivers-Young, L. 1998. Growth, nitrogen accumulation, and weed suppression by fall cover crops following early harvest of vegetables. Hortscience 33:6063.Google Scholar
[USDA] U.S. Department of Agriculture. 2005. United States Standards for Grades of Sweet Peppers. http://www.agribusinessonline.com/regulations/grades/grades_us_fresh/peperswt.pdf. Accessed: March 11, 2010.Google Scholar
[USDA] U.S. Department of Agriculture, Economic Research Service. 2010. Vegetables 2009 Summary. http://usda.mannlib.cornell.edu/usda/current/VegeSumm/VegeSumm-01-27-2010.pdf. Accessed: February 19, 2010.Google Scholar
[USEPA] U.S. Environmental Protection Agency. 2008. Ozone Layer Depletion—Regulatory Programs: The Phaseout of Methyl Bromide. Montreal Protocol. http://www.epa.gov/ozone/mbr/index.html. Accessed: September 15, 2008.Google Scholar
Wang, Q., Bryan, B. H., Klassen, W., Li, Y., Codallo, M., and Abdul-Baki, A. 2002. Improved tomato production with summer cover crops and reduced irrigation rates. Proc. Fla. State Hortic. Soc. 115:202207.Google Scholar