Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T11:20:59.792Z Has data issue: false hasContentIssue false

Current strategies for the assessment and evaluation of genetic diversity in chicken resources

Published online by Cambridge University Press:  18 September 2007

S. Weigend
Affiliation:
Institute for Animal Science and Animal Behaviour, Mariensee, Federal Agricultural Research Centre (FAL), 31535 Neustadt, Germany
M.N. Romanov
Affiliation:
Poultry Research Institute (UAAS), Borky, Zmiiv District, Kharkiv Region 63421, Ukraine
Get access

Abstract

Chicken genetic resources comprise a wide range of breeds and populations including red jungle fowl (the assumed progenitor of all domestic breeds), native and fancy breeds, middle level food producers, industrial stocks and specialised lines. Based on the suggestion that the more distant a breed or population is the more likely it is to carry unique genetic features, the assessment of genetic distances by means of molecular marker information may provide useful information for initial evaluation of chicken genetic resources. During the last two decades several molecular marker classes have become available. Variable numbers of tandem repeat loci, in particular microsatellites, have been successfully used in chicken diversity studies. Genetic diversity measures using the highly polymorphic variable number of tandem repeat lociyield reliable and accurate information for the study of genetic relationships between chicken populations. First results of the European project on chicken biodiversity (AVIANDIV) obtained from microsatellite typing in DNA pools of 51 diverse chicken breeds showed that jungle fowl populations, traditional unselected breeds and broiler lines appear to be widely heterogeneous populations that may include a large portion of the genetic diversity of the tested breeds. In contrast, highly selected strains (layers and experimental lines) are characterised by a lower polymorphism. They behave as outliers from the set of breeds sampled. Single nucleotide polymorphism is a new and very promising molecular marker system which offers opportunities to assess the genetic diversity in farm animal species differently by investigating the mode and extent of changes in certain positions in the genome.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akishinonomiya, F., Miyake, T., Sumi, S., Takada, M., Ohno, S. and Kondo, N. (1994) One subspecies of the red junglefowl (Gallus gullus gullus) suffices as the matriarchic ancestor of all domestic breeds. Proceedings of the National Academy of Sciences of the USA 91: 1250512509Google Scholar
Anglana, M., Vigoni, M.T. and Giulotto, E. (1996) Four horse genomic fragments containing minisatellites detect highly polymorphic DNA fingerprints. Animal Genetics 27: 286Google Scholar
Arranz, J.J., Bayon, Y. and San Primitivo, F. (1998) Genetic relationships among Spanish sheep using microsatellites. Animal Genetics 29: 435440Google Scholar
Barker, J.S. (1994) A global programme for determining genetic distances among domestic livestock breeds. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production 21: 501508Google Scholar
Barker, J.S., Moore, S.S., Hetzel, D.J., Evans, D., Tan, S.G. and Byrne, K. (1997) Genetic diversity of Asian water buffalo (Bubalus bubalis): microsatellite variation and a comparison with protein-coding loci. Animal Genetics 28: 103115CrossRefGoogle Scholar
Bondarenko, Yu.V. (1974) [Polymorphism of proteins of eggs of chickens of different breeds and lines]. Ptakhiunitstuo 17: 3237Google Scholar
Bowcock, A.M., Ruiz-Linares, A., Tomfohrde, J., Minch, E., Kidd, J.R. and Cavalli-Sforza, L.L. (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455457Google Scholar
Buchanan, F.C., Adams, L.J., Littlejohn, R.P., Maddox, J.F. and Crawford, A.M. (1994) Determination of evolutionary relationships among sheep breeds using microsatellites. Genomics 22: 397403CrossRefGoogle ScholarPubMed
Buitkamp, J., Ammer, H. and Geldermann, H. (1991) DNA fingerprinting in domestic animals. Electrophoresis 12: 169174CrossRefGoogle ScholarPubMed
Bumstead, N., Messer, L.I. and Greenwood, N.G. (1987) Use of ev loci as a measure of inbreeding in domestic fowls. British Poultry Science 28: 717725CrossRefGoogle ScholarPubMed
Burke, T., Hanotte, O., Bruford, M.W. and Cairns, E. (1991) Multilocus and single locus minisatellite analysis in population biological studies. In: DNA Fingerprinting: Approaches and Applications (Burke, T., Dolf, G., Wolff, R. and Jeffreys, A.J., Eds.), Birkhauser, Basel, Switzerland, pp. 154168CrossRefGoogle Scholar
Cavalli-Sforza, L.L. and Edwards, K.J. (1967) Phylogenetic analysis: models and estimation procedures. American Journal of Human Genetics 19: 233257Google Scholar
Cheng, H.H. and Crittenden, L.B. (1994) Microsatellite markers for genetic mapping in the chicken. Poultry Science 73: 539546Google Scholar
Crawford, R.D. (1990) Origin and history of poultry species. In: Poultry Breeding and Genetics (Crawford, R.D., Ed.), Elsevier, Amsterdam, The Netherlands, pp. 142Google Scholar
Crawford, R.D. and Christman, C. (1992) Heritage hatchery networks in poultry conservation. In: Genetic Conservation of Domestic Livestock, Volume 2 (Alderson, L. and Bodo, I., Eds), CAB International, Oxford, UK, pp. 212222Google Scholar
Crooijmans, R.P.M.A., van Kampen, A.J.A., van der POEL, J.J. and Groenen, M.A.M. (1993) Highly polymorphic microsatellite markers in poultry. Animal Genetics 24: 441443Google Scholar
Crooijmans, R.P.M.A., Oers, P.A.M., Strijk, J.A., van der Poel, J.J. and Groenen, M.A.M. (1996a) Preliminary linkage map of the chicken (Gallus domesticus) genome based on microsatellite markers: 77 new markers mapped. Poultry Science 75: 746754CrossRefGoogle ScholarPubMed
Crooijmans, R.P.M.A., Groen, A.F., van Kampen, A.J.A., van der Beek, S., van der Poel, J.J. and Groenen, M.A.M. (1996b) Microsatellite polymorphism in commercial broiler and layer lines estimated using pooled blood samples. Poultry Science 75: 904909Google Scholar
De Gortari, M.J., Freking, B.A., Kappes, S.M., Leymaster, K.A., Crawford, A.M., Stone, R.T. and Beattie, C.W. (1997) Extensive genomic conservation of cattle microsatellite heterozygosity in sheep. Animal Genetics 28: 274290Google Scholar
Delany, M. (2000) Importance of biodiversity preservation for research and industry. In: Proceedings of the XXI World's Poultry Congress,Montreal.Google Scholar
Delany, M.E. and Pisenti, J.M. (1998) Conservation of poultry genetic resources: consideration of the past, present and future. Poultry and Avian Biology Reviews 9: 2542Google Scholar
Dunnington, E.A., Gal, O. and Plotsky, Y. (1990) DNA fingerprints of chickens selected for high and low body weight for 31 generations. Animal Genetics 21: 221231CrossRefGoogle ScholarPubMed
Dunnington, E.A., Gal, O. and Siegel, P.B. (1991) Deoxyribonucleic acid fingerprint comparisons between selected populations of chickens. Poultry Science 70: 463467Google Scholar
Dunnington, E.A., Stallard, L.C., Hillel, J. and Siegel, P.B. (1994) Genetic diversity among commercial chicken populations estimated from DNA fingerprints. Poultry Science 73: 12181225CrossRefGoogle ScholarPubMed
Ellegren, H., Andersson, L., Johansson, M. and Sandberg, K. (1992) DNA fingerprinting in horses using a simple (TG)n probe and its application to population comparisons. Animal Genetics 23: 19CrossRefGoogle ScholarPubMed
Frankham, R. (1994) Conservation of genetic diversity for animal improvement. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production 21: 385392Google Scholar
Garcia De Leon, F.J., Dallas, J.F., Chatain, B., Canonne, M., Versini, J.J. and Bonhomme, F. (1995) Development and use of microsatellite markers in seabass, Dicentrarchus labrux(Linnaeus, 1758) (Perciformes: Serrandidae). Molecular Marine Biology and Biotechnology 4: 6268Google Scholar
Gintovt, V.E., Podstreshny, A.P., Kovalenko, V.P., Koziner, M.A., Kosenko, N.F., Sapronova, N.I. and Kovalenko, A.T. (1981) [Analysis of interlinear and intralinear genetic differentiation of laying hens using marker genes (blood groups)]. Genetika 17: 873882Google Scholar
Gintovt, V.E., Podstreshny, A.P., Mashurov, A.M. and Berendyaeva, Z.I. (1983) [Study of gene pool of the domestic fowl by the methods of immunogenetic analysis]. Genetiku 19: 18871894Google Scholar
Goldstein, D.B., Linares, A.R., Cavalli-Sforza, L.L. and Feldman, M.W. (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 139: 463471CrossRefGoogle ScholarPubMed
Groen, A.F., Crooijmans, R.P.M.A., van Kampen, A.J.A., van der Beek, S., van der Poel, J.J. and Groenen, M.A.M. (1994) Microsatellite polymorphism in commercial broiler and layer lines. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production 21: 9497Google Scholar
Groenen, M.A.M., Ruyter, D., Verstege, E.J.M., Devries, M. and van der Poel, J.J. (1995) Development and mapping of ten porcine microsatellite markers. Animal Genetics 26: 115118Google Scholar
Groenen, M.A.M., Crooijmans, R.P.M.A., Veenendaal, A., Cheng, H.H., Sivek, M. and van der Poel, J.J. (1998) A comprehensive microsatellite linkage map of the chicken genome. Genomics 49: 265274CrossRefGoogle ScholarPubMed
Haberfeld, A., Dunnington, E.A. and Siegel, P.B. (1992) Genetic distances estimated from DNA fingerprints in crosses of white Plymouth Rock chickens. Animal Genetics 23: 167173CrossRefGoogle ScholarPubMed
Hacia, J.G.,Fan, J.-B., Ryder, O., Jin, L., Edgemon, K., Ghandour, G., Mayer, R.A., Sun, B., Hsie, L., Robbins, C.M., Brody, L.C., Wang, D., Lander, E.S., Lipshutz, R., Fodor, S.P.A. and Collins, F.S. (1999) Determination of ancestral alleles for human single nucleotide polymorphisms using high-density oligonucleotide arrays. Nature Genetics 22: 164167CrossRefGoogle ScholarPubMed
Hammond, K. (1994) Conservation of domestic animal diversity: global overview. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production 21: 423439Google Scholar
Hillel, J., Plotsky, Y., Haberfeld, A., Lavi, U., Cahaner, A. and Jeffreys, A.J. (1989a) DNA fingerprints of poultry. Animal Genetics 20: 2535CrossRefGoogle ScholarPubMed
Hillel, J., Plotsky, Y., Gal, O., Haberfeld, A., Lavi, U., Dunnington, E.A., Siegel, P.B., Jeffreys, A.J. and Cahaner, A. (1989b) DNA fingerprint in chickens. Proceedings of the 31st British Poultry Breeders Roundtable, Reading,UK, pp. 1–11Google Scholar
Hillel, J., Dunnington, E.A. and Siegel, P.B. (1992) DNA markers in poultry breeding and genetic analyses. Poultry Science Reviews 4: 169186Google Scholar
Hillel, J., Korol, A., Kirzner, V., Freidlin, P., Weigend, S., Barre-Dirie, A., Groenen, M.A.M., Crooijmans, R.P.M.A., Tixier-Boichard, M., Vignal, A., Wimmers, K., Burke, T., Thomson, P.A., Mäaki-Tanila, A., Elo, K., Zhivotovsky, L.A. and Feldman, M.W. (1999) Biodiversity of chickens based on DNA pools: first results of the EC funded project AVIANDIV. Proceedings of the Poult ry Genetic Symposium, Mariensee,Germany, pp. 22–29Google Scholar
Jeffreys, A.J., Wilson, V. and Thein, S.L. (1985a) Hypervariable minisatellite regions in human DNA. Nature 314: 6773CrossRefGoogle ScholarPubMed
Jeffreys, A.J., Wilson, V. and Thein, S.L. (1985b) Individual-specific “fingerprints” of human DNA. Nature 316: 7679Google Scholar
Karaca, M., Karaca, F.G., Patel, C. and Emara, M.G. (1999) Preliminary analysis of microsatellite loci in commercial broiler chickens. Proceedings of the Plant and Animal Genome VII Conference,San Diego, USA, P300 (abstract)Google Scholar
Khatib, H., Genislav, E., Criltenden, L.B., Bumstead, N. and Soller, M. (1993) Sequence tagged microsatellite sites as markers in chicken reference and resource populations. Animal Genetics 24: 355362Google Scholar
Khatib, H., Darvasi, A., Plotsky, Y. and Soller, M. (1994) Determining relative microsatellite allele frequencies in pooled DNA samples. PCR Methods and Applications 4: 1318Google Scholar
Kovalenko, V.P., Bondarenkox, Yu.V. and Kutnyuk, P.I. (1977) [Genetic polymorphism of egg proteins of poultry and its use in breeding]. In: [Poultry Germplasm] (Smetnev, S.I., Ed.), Moscow, Russia, pp. 105109Google Scholar
Kuhnlein, U., Dawe, Y., Zadworny, D., and Gavora, J.S. (1989) DNA fingerprinting: a tool for determining genetic distances between strains of poultry. Theoretical and Applied Genetics 77: 669672Google Scholar
Kuhnlein, U., Zadworny, D., Dawe, Y., Fairfull, R.W. and Gavora, J.S. (1990) Assessment of inbreeding by DNA fingerprinting development of a calibration curve using defined strains of chicken. Genetics 125: 161165CrossRefGoogle Scholar
Levinson, G. and Gutman, G.A. (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Molecular Biology and Evolution 4: 203221Google Scholar
Li, K., Chen, Y., Moran, C., Peng, Z., Fan, B., Gong, Y., Zhao, S. and Li, X. (1998) Analysis of diversity and genetic relationships between eight indigenous pig breeds in Southern China with 27 microsatellites recommended by ISAG-FAO. Animal Genetics 29(Supplement 1): 13Google Scholar
Lush, J. L. (1994) The genetic nature of differences between groups. In: The Genetics of Populations (Chapman, A.B., Shrode, R.R. and Crow, J.F., Eds.), Iowa State University, Ames, Iowa, USA, pp. 248268Google Scholar
MacHugh, D.E., Loftus, R.T., Bradley, D.G., Sharp, P.M. and Cunningham, P. (1994) Microsatellite DNA variation within and among European cattle breeds. Proceedings of the Royal Society of London. Series B, Biological Sciences 25–31CrossRefGoogle Scholar
MacHugh, D.E., Loftus, R.T., Cunningham, P. and Bradley, D.G. (1998) Genetic structure of seven European cattle breeds assessed using 20 microsatellite markers. Animal Genetics 29: 333340CrossRefGoogle ScholarPubMed
Martin-Burriel, I., Garcia-Muro, E. and Zaragoza, P. (1999) Genetic diversity analysis of six Spanish native cattle breeds using microsatellites. Animal Genetics 30: 177182Google Scholar
Martinez, A.M., De La Haba, M., Zamorano, M.J., Rodero, A. and Vegapla, J.L. (1998) Characterisation of Iberian pig with 25 microsatellites based on multiplex-PCR. Animal Genetics 29(Supplement 1): 13Google Scholar
Meunier, J.-R. and Grimont, P.A.D. (1993) Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. Research in Microbiology 144: 373379CrossRefGoogle ScholarPubMed
Mina, N.S., Sheldon, B.L., Yoo, B.H. and Frankham, R. (1991) Heterozygosity at protein loci in inbred and outbred lines of chickens. Poultry Science 70: 18641872CrossRefGoogle ScholarPubMed
Moazami-Goudarzi, K., Laloe, D., Furet, J.P. and Grosclaude, F. (1997) Analysis of genetic relationships between 10 cattle breeds with 17 microsatellites. Animal Genetics 28: 338345CrossRefGoogle ScholarPubMed
Moiseyeva, I.G., Volokhovich, V.A., Tolokonnikova, E.V. and Alwkhov, Yu.P. (1984) [Differentiation of chicken breeds for biochemical gene markers]. Genetika 20: 672681Google Scholar
Moiseyeva, I.G., Semyonova, S.K., Bannikova, L.V. and Filippova, N.D. (1994) [Genetic structure and origin of an old Russian Orloff chicken breed]. Genetika 30: 681694Google Scholar
Nei, M. (1972) Genetic distance between populations. American Naturalist 106: 283292Google Scholar
Nei, M. and Takezaki, N. (1996) The root of the phylogenetic tree of human populations. Molecular Biology and Evolution 13: 170177Google Scholar
Nikiforov, A.A., Moiseyeva, I.G. and Zakharov, I.A. (1998) [Position of Russian chicken breeds in the diversity of Eurasian breeds]. Genetika 34: 850851Google Scholar
Ollivier, L., Bodo, I. and Simon, D.L. (1994) Current development in the conservation of domestic animal diversity: The Europe. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production 21: 455461Google Scholar
Paszek, A.A., Flickinger, G.H., Fontanesi, L., Beattie, C.W., Rohrer, G.A., Alex-Ander, L. and Schook, L.B. (1998) Evaluating evolutionary divergence with microsatellites. Journu1 of Molecular Evolution 46: 121126Google Scholar
Peelman, L.J., Mortiaux, F., van Zeveren, A., Dansercoer, A., Mommens, G., Coopman, F., Bouquet, Y., Burny, A., Renaville, R. and Portetelle, D. (1998) Evaluation of the genetic variability of 23 bovine microsatellite markers in four Belgian cattle breeds. Animal Genetics 29: 161167CrossRefGoogle ScholarPubMed
Pisenti, J.M., Delany, M.E., Taylor, R.L. Jr, Abbott, U.K., Abplanalp, H., Arthur, J.A., Bakst, M.R., Baxter-Jones, C., Bitgood, J.J., Bradley, F.A., Cheng, K.M., Dietert, R.R., Dodgson, J.B., Donoghue, A.M., Emsley, A.B., Etches, R.J., Frahm, R.R., Gerrits, R.J., Goetinck, P.F., Grunder, A.A., Harry, D.E., Lamont, S.J., Martin, G.R., Mcguire, RE., Moberg, G.P., Pierro, L.J., Qualset, C.O., Quereshi, M.A., Shultz, F.T. and Wilson, B.W. (1999) Avian Genetic Resources at Risk: An Assessment and Proposal for Conservation of Genetic Stocks in the U S A and Canada. Report No. 20, University of California Division of Agriculture and Natural Resources, Genetic Resources Conservation Program, Davis, CAGoogle Scholar
Plotsky, Y., Kaiser, M.G. and Lamont, S.J. (1995) Genetic characterisation of highly inbred chicken lines by two DNA methods: DNA fingerprinting and polymerase chain reaction using arbitrary primers. Animal Genetics 26: 163170CrossRefGoogle ScholarPubMed
Podstreshny, A.P. (1977) [The use of immunogenetic analysis for the characterisation of lines of domestic fowls of different genealogical origin]. Nauchno-tekhnicheskii byulleten' /Ukrainian Poultry Research Institute, pp. 317Google Scholar
Podstreshny, A.P., Zakharova, M.L., Mashurov, A.M. and Ivanova, T.V. (1984) [Gene frequency changes at polymorphic loci during selection and acclimatisation of fowl lines]. Sel'skokhozyaistvennaya biologiya 11: 8083Google Scholar
Ponsuksili, S., Wimmers, K. and Horst, P. (1996) Valuation of different combinations of oligonucleotide probes and restriction enzymes to generate DNA fingerprints reflecting genetic variability in different strains of chickens. Archiv für Geflügelkunde 60: 227235Google Scholar
Ponsuksili, S., Wimmers, K., Schmoll, F., Horst, P. and Schellander, K. (1999) Comparison of multilocus DNA fingerprints and microsatellites in an estimate of genetic distance in chicken. Journal of Heredity 90: 656659Google Scholar
Reynolds, J., Weir, B.S. and Cockerham, C.C. (1983) Estimation of the co-ancestry coefficient basis for a short-term genetic-distance. Genetics 105: 767779Google Scholar
Romanov, M.N. (1994a) Using phenetic approaches for studying poultry populations under preservation and breeding. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production 21: 556559Google Scholar
Romanov, M.N. (1994b) [Electrophoretic study of the ovoprotein loci in layer populations under improvement of Hisex Brown cross]. Proceedings of the 1st International Conference “Molecular-Genetic Markers of Animals”, Kyiv,Ukraine, pp. 34–35Google Scholar
Romanov, M.N. (1999) Goose production efficiency as influenced by genotype, nutrition and production systems. World's Poultry Science Journal 55: 281294Google Scholar
Romanov, M.N. and Weigend, S. (1999) Genetic diversity in chicken populations based on microsatellite markers. Proceedings of the Conference “From Jay Lush to Genomics: Visions for Animal Breeding and Genetics”,Ames, Iowa, USA, p. 174Google Scholar
Romanov, M.N. and Weigend, S. (2001a) Using RAPD markers for assessment of genetic diversity in chickens. Archiv für Gefliigelkunde 65: 14Google Scholar
Romanov, M.N. and Weigend, S. (2001b) Analysis of genetic relationships between various populations of domestic and jungle fowl using microsatellite markers. Poultry Science 80 (in press)CrossRefGoogle ScholarPubMed
Romanov, M.N., Wezyk, S., Cywa-Benko, K. and Sakhatsky, N. I. (1996) Poultry genetic resources in the countries of Eastern Europe: history and current state. Poultry and Avian Biology Reviews 7: 129Google Scholar
Ruane, J. (1999) A critical review of genetic distance studies in conservation of animal genetic resources. Journal of Animal Breeding and Genetics 116: 317323Google Scholar
Saitou, N. and Nei, M. (1987) The Neighbor-Joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406425Google Scholar
Sanchez, J.A., Clabby, C., Ramos, D., Blanco, G., Flavin, F., Vazquez, E. and Powell, R. (1996) Protein and microsatellite single locus variability in Salmo salar L. (Atlantic salmon). Heredity 77: 423432Google Scholar
Schlotterer, C. and Tautz, D. (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Research 20: 211215CrossRefGoogle ScholarPubMed
Sellick, G.S., Kojevnikoff, H., Raadsma, H.W. and Bottema, C.D.K. (1998) Single nucleotide polymorphisms for parentage testing in cattle and sheep. Animal Genetics 29(Supplement 1): 12Google Scholar
Signer, E.N. and Jeffreys, A.J. (1993) Application of human minisatellite probes to the development of informative DNA fingerprints and the isolation of locus-specific markers in animals. Experientia Supplementum 67: 421428Google Scholar
Singh, H. and Nordskog, A.W. (1981) Biochemical polymorphic systems in inbred lines of chickens: a survey. Biochemical Genetics 19: 10311035CrossRefGoogle ScholarPubMed
Slatkin, M. (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457462Google Scholar
Smith, E.J., Jones, C.P., Bartlett, J. and Nestor, K.E. (1996) Use of randomly amplified polymorphic DNA markers for the genetic analysis of relatedness and diversity in chickens and turkeys. Poultry Science 75: 579584CrossRefGoogle ScholarPubMed
Stefanovich, V. Ye. and Podstreshny, A.P. (1989) Study of allotypes as geneticmarkers in chickens. Proceedings of the 8th International Symposium on Current Problems of Avian Genetics Smolenice-Bratislava,Czechoslovakia, pp. 195–199Google Scholar
Takahashi, H., Nirasawa, K., Nagamine, Y., Tsudzuki, M. and Yamamoto, Y. (1998) Genetic relationships among Japanese native breeds of chicken based on microsatellite DNA polymorphisms. Journal of Heredity 89: 543546CrossRefGoogle ScholarPubMed
Tautz, D. (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research 17: 64636471CrossRefGoogle ScholarPubMed
Teale, A.J., Tan, S.G. and Tan, J.H. (1994) Applications of molecular genetic and reproductive technologies in the conservation of domestic animal diversity. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production 21: 493500Google Scholar
Tixier-Boichard, M., Durand, L., Morisson, M., Ricard, F. and Coquerelle, G. (1994) Comparative analysis of avian leukosis virus-related endogenous viral genes in experimental strains of the domestic chicken. Génétique, Sélection, Evolution 26(Supplement 1): 5366CrossRefGoogle Scholar
Tixier-Boichard, M., Hillel, J., Korol, A., Kirzner, V., Freidlin, P., Weigend, S., Barre-Dirie, A., Groenen, M.A.M., Crooijmans, R.P.M.A., Vignal, A., Wimmers, K., Burke, T., Thomson, P.A., Maki-Tanila, A., Elo, K., Zhivotovsky, L.A. and Feldman, M.W. (1999) Contribution of data on history, management and phenotype to the description of the diversity between chicken populations sampled within the AVIANDIV project. Proceedings of the Poultry Genetic Symposium,Mariensee, Germanym, pp. 15–21Google Scholar
Vanhala, T., Tuiskula-Haavisto, M., Elo, K., Vilkki, J. and MäKi-Tanila, A. (1998) Evaluation of genetic variability and genetic distances between eight chicken lines using microsatellite markers. Poultry Science 77: 783790CrossRefGoogle ScholarPubMed
Vignal, A., Monbrun, C., Thomson, P., Barre-Dirie, A., Burke, T., Groenen, M., Hillel, J., Maki-Tanila, A., Tixier-Boichard, M., Wimmers, K. and Weigend, S. (2000) Estimation of SNP frequencies in European chicken populations. Proceedings of the 27th International Conference on Animal Genetics, Minneapolis,USA, p. 71Google Scholar
Wakana, S., Watanabe, T., Hayashi, Y. and Tomita, T. (1986) A variant in the restriction endonuclease cleavage pattern of mitochondrial DNA in the domestic fowl, Gallus gallus domesticus. Animal Genetics 17: 159168CrossRefGoogle ScholarPubMed
Wakana, S., Watanabe, T., Tomita, T., and Hashiguchi, T. (1988) Genetic relationships among domestic fowl (Gallus) inferred restriction endonuclease analysis of mitochondrial DNA. Proceedings of the 18th World's Poultry Congress, Nagoya,Japan, pp. 505–506Google Scholar
Weigend, S., Vef, E., Wesch, G., Meckenstock, E., Seibold, R. and Ellendorff, F. (1995) Conception for conserving genetic resources in poultry in Germany. Archiv für Geflügelkunde 59: 327334Google Scholar
Weigend, S., Hillel, J., Groenen, M.A.M., Tixier-Boichard, M., Korol, A., Kirzner, V., Freidlin, P., Crooijmans, R.P.M.A., Vignal, A., Wimmers, K., Ponsuksili, S., Thomson, P.A., Burke, T., Mäki-Tanila, A., Elo, K., Barre-Dirie, A., Zhivo-Tovsky, L.A. and Feldman, M.W. (2000) Assessment of biodiversity in a wide range of chicken breeds by genotyping DNA pools for microsatellite loci. Proceedings of the 27th International Conference on Animal Genetics, Minneapolis,USA, p. 83Google Scholar
Wolff, R.K., Plaetke, R., Jeffreys, A.J. and White, R. (1989) Unequalcrossingover between homologous chromosomes is not the major mechanism involved in the generation of new alleles at VNTR loci. Genomics 5: 382384Google Scholar
Yang, L., Zhao, S.H., Li, K., Peng, Z.Z. and Montgomery, G.W. (1999) Determination of genetic relationships among five indigenous Chinese goat breeds with six microsatellite markers. Animal Genetics 30: 452455Google Scholar
Ye, X., Zhu, J., Velleman, S.G. and Nestor, K.E. (1998a) Genetic diversity of commercial turkey primary breeding lines as estimated by DNA fingerprinting. Poultry Science 77: 802807Google Scholar
Ye, X., Zhu, J., Velleman, S.G., Bacon, W.L. and Nestor, K.E. (1998b) Measurement of genetic variation within and between Japanese quail lines using DNA fingerprinting. Poultry Science 77 17551758Google Scholar
Zhou, H. and Lamont, S.J. (1999) Genetic characterisation of biodiversity in highly inbred chicken lines by microsatellite markers. Animal Genetics 30: 256264CrossRefGoogle ScholarPubMed
Zhu, J., Nestor, K.E., Patterson, R.A., Jackwood, D.J. and Emmerson, D.A. (1996) Measurement of genetic parameters within and between turkey lines using DNA fingerprinting. Poultry Science 75: 439446Google Scholar