Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T12:26:21.623Z Has data issue: false hasContentIssue false

Selection for increased resistance to Salmonella carrier-state

Published online by Cambridge University Press:  12 July 2010

C. BEAUMONT*
Affiliation:
Institut National de la Recherche Agronomique, UR083, Unité de Recherche Avicole, 37380 Nouzilly, France
H. CHAPUIS
Affiliation:
Syndicat des sélectionneurs avicoles et aquacoles Français, Centre INRA de Tours, 37380 Nouzilly, France
N. SELLIER
Affiliation:
Institut National de la Recherche Agronomique, UR083, Unité de Recherche Avicole, 37380 Nouzilly, France
F. CALENGE
Affiliation:
Institut National de la Recherche Agronomique, UR083, Unité de Recherche Avicole, 37380 Nouzilly, France
P. ZONGO
Affiliation:
Institut National de la Recherche Agronomique, UR083, Unité de Recherche Avicole, 37380 Nouzilly, France
P. VELGE
Affiliation:
Institut National de la Recherche Agronomique, UR1282, IASP, 37380 Nouzilly, France
J. PROTAIS
Affiliation:
Agence Française de Sécurité Sanitaire des Aliments, Laboratoire d'Etudes et de Recherches Avicoles, Porcines et Piscicoles, Les Croix, BP53, 22440 Ploufragan, France
*
Corresponding author: Catherine.Beaumont@tours.inra.fr
Get access

Abstract

Improving the fowl's natural ability to clear Salmonella from their body is important in reducing disease prevalence in poultry flocks, as recommended by a recent regulation of the European Commission. It may be efficient, as expected from estimation of heritability coefficients : 0.16 in chicks and 0.18 for global contamination of hens. The animal's age has to be considered since the genetic correlation between resistances at the two ages is negative. Selecting two series of divergent lines for increased or decreased resistance, after inoculation at one week of age (chick resistance) or at the peak of lay (adult resistance) confirmed the efficiency at least of selection for the adult resistance. In parallel, genes controlling variations to Salmonella resistance were researched and several QTLs identified in crosses between experimental lines and, for some of them, confirmed in commercial lines. Thanks to the derivation of a model of Salmonella propagation within a flock, it has been shown that a combination of vaccination and genetic selection can result in very low percentage of contamination.

Type
Review Article
Copyright
World's Poultry Science Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BEAUMONT, C., PROTAIS, J., GUILLOT, J.F., COLIN, P., PROUX, K., MILLET, N. and PARDON, P. (1999) Genetic resistance to mortality of day-old chicks and carrier-state of hens after inoculation with Salmonella enteritidis. Avian Pathology 28: 131-135.CrossRefGoogle ScholarPubMed
BEAUMONT, C., DAMBRINE, G., CHAUSSE, A.M. and FLOCK, D. (2003a) Selection for disease resistance: conventional breeding for resistance to bacteria and viruses, in MUIR W.M. & AGGREY S.E. (Eds) "Poultry Genetics, Breeding and Biotechnology", pp. 357-384 (CAB International, Oxon, UK).Google Scholar
BEAUMONT, C., PROTAIS, J., PITEL, F., LEVEQUE, G., MALO, D., LANTIER, F., PLISSON-PETIT, F., COLIN, P., PROTAIS, M., LE ROY, P., ELSEN, J.M., MILAN, D., LANTIER, I., NEAU, A., SALVAT, G. and VIGNAL, A. (2003b) Effect of two candidate genes on the Salmonella carrier state in fowl. Poultry Science 82: 721-726.CrossRefGoogle ScholarPubMed
BEAUMONT, C., CHAPUIS, H., PROTAIS, J., SELLIER, N., MENANTEAU, P., FRAVALO, P. and VELGE, P. (2009) Resistance to Salmonella carrier-state: selection may be efficient but response depends on animal's age. Genetics Research 91: 161-169.CrossRefGoogle ScholarPubMed
BERTHELOT, F., BEAUMONT, C., MOMPART, F., GIRARD-SANTOSUOSSO, O., PARDON, P. and DUCHET-SUCHAUX, M. (1998) Estimated heritability of the resistance to cecal carrier state of Salmonella enteritidis in chickens. Poultry Science 77: 797-801.Google Scholar
BUMSTEAD, N. and BARROW, P. (1988) Genetics of resistance to Salmonella typhimurium in newly hatched chicks. British Poultry Science 29: 521-9.CrossRefGoogle ScholarPubMed
BUMSTEAD, N. and BARROW, P. (1993) Resistance to Salmonella gallinarum, S. pullorum and S. enteritidis in inbred lines of chickens. Avian Diseases 37: 189-93.Google Scholar
CALENGE, F., LECERF, F., DEMARS, J., FEVE, K., VIGNOLES, F., PITEL, F., VIGNAL, A., VELGE, P., SELLIER, N. and BEAUMONT, C. (2009) Interest of a selective genotyping analysis in inbred lines to improve Salmonella carrier state resistance in chicken commercial lines. Animals Genetics 40: 590-597.Google Scholar
CARON, J., LOREDO-OSTI, J., LAROCHE, L., SKAMENE, E., MORGAN, K. and MALO, D. (2002) Identification of genetic loci controlling bacterial clearance in experimental Salmonella enteritidis infection : an unexpected role of Nramp1 (Slc11a1) in the persistence of infection in mice. Genes and Immunology 3: 196-204CrossRefGoogle ScholarPubMed
DE VOLT, H.M., QUIGLEY, G.D. and BYERLY, T.G. (1941) Studies of resistance to pullorum disease in chicks. Poultry science 20: 339-341.CrossRefGoogle Scholar
DUCHET-SUCHAUX, M., LECHOPIER, P., MARLY, J., BERNARDET, P., DELAUNAY, R. and PARDON P., (1995) Quantification of experimental Salmonella enteritidis carrier state in B13 leghorn chicks. Avian Disease 39:796-803.CrossRefGoogle ScholarPubMed
EFSA, (2006) Preliminary report on the Analysis of the baseline study on the prevalence of Salmonella in laying hen flocks. The EFSA Journal 81: 1-71.Google Scholar
EFSA, (2007a) Report of the Task Force on Zoonoses Data Collection on the Analysis of the baseline survey on the prevalence of Salmonella in broiler flocks of Gallus gallus, in the EU, 2005-2006. The EFSA Journal 98: 1-85.Google Scholar
EFSA, (2007b) The Community Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents, Antimicrobial resistance and Foodborne outbreaks in the European Union in 2005. 20ISBN 978-92-9199-046-7, http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1178620767319.htmGoogle Scholar
FIFE, M.S., SALMON, N., HOCKING, P.M. and KAISER, P. (2009) Fine mapping of the chicken salmonellosis resistance locus (SAL1). Animal Genetics 40: 871-877CrossRefGoogle ScholarPubMed
GIRARD-SANTOSUOSSO, O., LANTIER, F., LANTIER, I., BUMSTEAD, N., ELSEN, J.M. and BEAUMONT, C. (2002) Heritability of susceptibility to Salmonella enteritidis infection in fowls and test of the role of the chromosome carrying the NRAMP1 gene. Genetics Selection Evolution 34: 211-219.CrossRefGoogle ScholarPubMed
GODDARD, M.E. and HAYES, B.J. (2007) Genomic selection. Journal of Animal Breeding and Genetics, Special issue: Genomic selection 124: 323-330.Google Scholar
HU, J., BUMSTEAD, N., BURKE, D., FA, P.D.L., SKAMENE, E., GROS, P. and MALO, D. (1995) Genetic and physical mapping of the natural resistance-associated macrophage protein 1 (NRAMP1) in chicken. Mammalian Genome 6: 809-15.CrossRefGoogle ScholarPubMed
HU, J., BUMSTEAD, N., SKAMENE, E., GROS, P. and MALO, D. (1996) Structural organization, sequence, and expression of the chicken NRAMP1 gene encoding the natural resistance-associated macrophage protein 1. DNA Cell Biology 15: 113-23.Google Scholar
HU, J.N., BUMSTEAD, N., BARROW, P., SEBASTIANI, G., OLIEN, L., MORGAN, K. and MALO, D. (1997) Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC. Genome Research 7: 693-704.CrossRefGoogle ScholarPubMed
HUGHES, L.M., BAO, J., HU, Z.L., HONAVAR, V. and REECY, J.M. (2008) Animal trait ontology: The importance and usefulness of a unified trait vocabulary for animal species. Journal of Animal Science 86(6): 1485-1491Google Scholar
HUMPHREY, T.J., BASKERVILLE, A., MAWER, S., ROWE, B. and HOPPER, S. (1989) Salmonella enteritidis phage Type 4 from the contents of intact eggs: a study involving naturally infected hens. Epidemiology and Infection 103: 415-423CrossRefGoogle ScholarPubMed
HUTT, F. AND SCHOLES and J., (1941) XIII. Breed differences in susceptibility to Salmonella pullorum. Poultry Science 20: 342-352.CrossRefGoogle Scholar
JANSS, L.L. and BOLDER, N.M. (2000) Heritabilities of and genetic relationships between salmonella resistance traits in broilers. Journal of Animal Science 78: 2287-2291.CrossRefGoogle ScholarPubMed
KAISER, M., CHEESEMAN, J., KAISER, P. and LAMONT, S. (2006) Cytokine expression in chicken peripheral blood mononuclear cells after in vitro exposure to Salmonella enterica serovar enteritidis. Poultry Science 85: 1907-11.CrossRefGoogle ScholarPubMed
KRAMER, J., MALEK, M. and LAMONT, S. (2003) Association of twelve candidate gene polymorphisms and response to challenge with Salmonella enteritidis in poultry. Animal Genetics 34: 339-48.Google Scholar
LAMONT, S.J., KAISER, M.G. and LIU, W. (2002) Candidate genes for resistance to Salmonella enteritidis colonization in chickens as detected in a novel genetic cross. Veterinary Immunology and Immunopathology 87: 423-428.CrossRefGoogle Scholar
LEVEQUE, G., FORGETTA, V., MORROLL, S., SMITH, A., BUMSTEAD, N., BARROW, P., LOREDO-OSTI, J., MORGAN, K. and MALO, D. (2003) Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar typhimurium infection in chickens. Infection and Immunity 71: 1116-24.Google Scholar
LIU, W., KAISER, M. and LAMONT, S. (2003) Natural resistance-associated macrophage protein 1 gene polymorphisms and response to vaccine against or challenge with Salmonella enteritidis in young chicks. Poultry Science 82: 259-66.Google Scholar
MARIANI, P., BARROW, P.A., CHENG, H.H., GROENEN, M.A.M., NEGRINI, R. and BUMSTEAD, N. (2001) Localization to chicken Chromosome 5 of a novel locus determining salmonellosis resistance. Immunogenetics 53: 786-791.Google Scholar
PATRICK, M.E., ADCOCK, P.M., GOMEZ, T.M., ALTEKRUSE, S.F., HOLAND, B.H., TAUXE, R.V. and SWERDLOW, D.L. (2004) Salmonella enteritidis infections, United States, 1985-1999. Emerging Infectious Disease 10: 1-7.CrossRefGoogle ScholarPubMed
PRÉVOST, K., MAGAL, P. and BEAUMONT, C. (2006) A model of Salmonella infection within industrial house hens. Journal of Theoretical Biology 242: 755-63.CrossRefGoogle Scholar
PREVOST, K., MAGAL, P., PROTAIS, J. and BEAUMONT, C. (2008) Effect of genetic resistance of the hen to Salmonella carrier-state on incidence of bacterial contamination: synergy with vaccination. Veterinary Research 39: 20-31.CrossRefGoogle ScholarPubMed
PROTAIS, J., COLIN, P., BEAUMONT, C., GUILLOT, J.F., LANTIER, F., PARDON, P. and BENNEJEAN, G. (1996) Line differences in resistance to Salmonella enteritidis PT4 infection. British Poultry Science 37: 329-339.CrossRefGoogle ScholarPubMed
PROTAIS, J., NAGARD, B., BOSCHER, E., QUEGUINER, S., BEAUMONT, C. and SALVAT, G. (2003) Changes in Salmonella enteritidis contamination in two layer lines vaccinated during the rearing period. British Poultry Science 44: 827-828.CrossRefGoogle ScholarPubMed
PROUX, K., JOUY, E., HOUDAYER, C., PROTAIS, J., DIBB-FULLER, M., BOSCHER, E., GILLARD, A., GRACIEUX, P., GILBERT, F., BEAUMONT, C. and DUCHET-SUCHAUX, M. (2002) Reliable Elisas showing differences between resistant and susceptible lines in hens orally inoculated with Salmonella enteritidis. Veterinary Research 33: 23-33.CrossRefGoogle ScholarPubMed
RANTALA, M. and NURMI, E. (1973) Prevention of the growth of Salmonella infantis in chicks by the flora of the alimentary tract of chicken, British Poultry Science 14: 627-630.Google Scholar
ROY, M.F. and MALO, D. (2002) Genetic regulation of host responses to salmonella infection in mice. Genes and Immunity 3: 381-93.Google Scholar
SADEYEN, J.R., TROTEREAU, J., VELGE, P., MARLY, J., BEAUMONT, C., BARROW, P., BUMSTEAD, N. and LALMANACH, A.C. (2004) Salmonella carrier state in chicken: comparison of expression of immune response genes between susceptible and resistant animals. Microbes and Infection 6: 1278-86.CrossRefGoogle ScholarPubMed
SADEYEN, J.R., TROTEREAU, J., PROTAIS, J., BEAUMONT, C., SELLIER, N., SALVAT, G., VELGE, P. and LALMANACH, A.-C. (2006) Salmonella carrier-state in hens: study of host resistance by a gene expression approach. Microbes and Infection 8: 1308-14.CrossRefGoogle ScholarPubMed
TILQUIN, P., BARROW, P.A., MARLY, J., PITEL, F., PLISSON-PETIT, F., VELGE, P., VIGNAL, A., BARET P.V., , BUMSTEAD, N. and BEAUMONT C., (2005) A Genome Scan For Quantitative Trait Loci Affecting Salmonella Carrier-state In Chicken. Genetics Selection Evolution 37: 539-561.Google Scholar
VAN HEMERT, S., HOEKMAN, A., SMITS, M. and REBEL, J. (2006) Gene expression responses to a Salmonella infection in the chicken intestine differ between lines. Veterinary Immunology and Immunopathology 114: 247-58.CrossRefGoogle ScholarPubMed
VAN HEMERT, S., HOEKMAN, A., SMITS, M. and REBEL, J. (2007) Immunological and gene expression responses to a Salmonella infection in the chicken intestine. Veterinary Research 38: 51-63.Google Scholar
VELGE, P., CLOECKAERT, A. and BARROW, P. (2005) Emergence of Salmonella epidemics: the problems related to Salmonella enterica serotype enteritidis and multiple antibiotic resistance in other major serotypes. Veterinary Research 36: 267-88.CrossRefGoogle ScholarPubMed
VIDAL, S., TREMBLAY, M., GOVONI, G., GAUTHIER, S., SEBASTIANI, G., MALO, D., SKAMENE, E., OLIVIER, M., JOTHY, S. and GROS P., (1993) The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. Journal of Experimental Medicine 182: 655-66.CrossRefGoogle Scholar
ZHANG-BARBER, L., TURNER, A.K. and BARROW, P.A. (1999) Vaccination for control of Salmonella in Poultry. Vaccine 17: 2538-2545.CrossRefGoogle ScholarPubMed