Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T07:06:16.626Z Has data issue: false hasContentIssue false

Acaricidal drug resistance in poultry red mite (Dermanyssus gallinae) and approaches to its management

Published online by Cambridge University Press:  27 February 2014

R.Z. ABBAS*
Affiliation:
Department of Parasitology, University of Agriculture, Faisalabad-38040, Pakistan
D.D. COLWELL
Affiliation:
Livestock Parasitology, Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403 1st Ave. S., Lethbridge, AB., T1J 4B1, Canada
Z. IQBAL
Affiliation:
Department of Parasitology, University of Agriculture, Faisalabad-38040, Pakistan
A. KHAN
Affiliation:
Department of Pathology, University of Agriculture, Faisalabad-38040, Pakistan
*
Corresponding author: raouaf@hotmail.com
Get access

Abstract

Poultry red mite (Dermanyssus gallinae), the haematophagous pest of egg laying hens, is an important problem in poultry production in many parts of the world. Control has typically relied on synthetic acaricides in spite of advancements in immunological, biotechnological and genetic approaches. However, the repeated long term use of these compounds has resulted in the development of drug resistant populations of poultry mites, therefore, the availability of effective acaricides is diminishing rapidly. Due to this, there is need for the continuous availability of new chemical acaricides to replace the older types, however the development and registration of new acaricides is a long expensive process, therefore, preserving and maintaining the effectiveness of available acaricides is essential.

This review has two parts; the first is to provide the basic understanding of acaricide resistance in D. gallinae while the second part provides more detailed knowledge about the management of resistance to preserve the efficacy of available acaricides.

Type
Review Article
Copyright
Copyright © World's Poultry Science Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AXTELL, R.C. and ARENDS, J.J. (1990) Ecology and management of arthropods pests of poultry. Annual Review of Entomology 35: 101-126.CrossRefGoogle ScholarPubMed
BEESLEY, W.N. (1963) The effect of three organo-phosphorus insecticides on certain arthropods which infest livestock. Annals of Applied Biology 52: 295-303.Google Scholar
BEUGNET, F., CHAUVE, C., GAUTHEY, M. and BEERT, L. (1997) Resistance of the red poultry mite to pyrethroids in France. Veterinary Record 140: 577-579.Google Scholar
BLACKHALL, W.J., POULIOT, J.F., PRICHARD, R.K. and BEECH, R.N. (1998) Haemonchus contortus: selection at a glutamate-gated chloride channel gene in ivermectin- and moxidectin-selected strains. Experimental Parasitology 90: 42-48.Google Scholar
BLOOMQUIST, J.R. and SODERLUND, D.M. (1985) Neurotoxic insecticides inhibit GABA-dependent chloride uptake by mouse brain vesicles. Biochemical and Biophysical Research Communication 133: 37-43.Google Scholar
BLOOMQUIST, J.R. (1993) Toxicology, mode of action and target site-mediated resistance to insecticides acting on chloride channels. Comparative Biochemistry and Physiology 106: 301-314.Google Scholar
BROWN, A.W.A. (1969) Insecticide resistance and the future control of insects. Canadian Medical Association Journal 100: 216-221.Google Scholar
CAMPOS, F.C., DYBAS, R.A. and KRUPA, D.A. (1995) Susceptibility of two spotted spider mite (Acari: Tetranychidae) populations in California to abamectin. Journal of Economical Entomology 88: 225-231.Google Scholar
CAMPOS, F.C., KRUPA, D.A. and DYBAS, R.A. (1996) Susceptibility of populations of two spotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae) from Florida, Holland, and the Canary Islands to abamectin and characterization of abamectin resistance. Journal of Economical Entomology 89: 594-601.Google Scholar
CASIDA, J.E. and LAWRENCE, L.J. (1985) Structure-activity correlations for interactions of bicyclophosphorus esters and some polychlorocycloalkane and pyrethroid insecticides with the brain-specific t-butylbicyclophosphorothionate receptor. Environmental Health Perspectives 61: 123-132.Google Scholar
CHAPMAN, H.D. (1997) Biochemical, genetic and applied aspects of drug resistance in Eimeria parasites of the fowl. Avian Pathology 26: 221-244.Google Scholar
CHAUVE, C. (1998) The poultry red mite Dermanyssus gallinae (De Geer, 1778): current situation and future prospects for control. Veterinary Parasitology 79: 239-245.Google Scholar
CHEN, A.C., HE, H.Q. and DAVEY, R.B. (2007) Mutations in a putative octopamine receptor gene in amitraz-resistant cattle ticks. Veterinary Parasitology 148: 379-383.Google Scholar
CLARK, M., SCOTT, J.G., CAMPOS, F. and BLOOMQUIST, J.R. (1995) Resistance to avermectins - extent, mechanisms, and management implications. Annual Review of Entomology 40: 1-30.Google Scholar
COLLISON, C.H., DANKA, R.G. and KENNELL, D.R. (1981) An evaluation of permethrin, carbaryl, and amitraz for the control of northern fowl mites on caged chickens. Poultry Science 60: 1812-1817.Google Scholar
ENAYATI, A.A., ASGARIAN, F., AMOUEI, A., SHARIF, M., MORTAZAVI, H., BOUJHMEHRANI, H. and HEMINGWAY, J. (2010) Pyrethroid insecticide resistance in Rhipicephalus bursa (Acari, Ixodidae). Pesticide Biochemistry and Physiology 97: 243-248.Google Scholar
GENCHI, C., HUBER, H. and TRALDI, G. (1984) The efficacy of flumethrin (Bayticol Bayer) for the control of chicken mite Dermanyssus gallinae (De Geer, 1778) (Acarina, Dermanyssidae). Archivio Veterinario Italiano 35: 125-128.Google Scholar
GEORGE, D.R., SHIELA, R.S., APPLEBYB, W.G.C., KNOXC, A. and GUY, J.H. (2010) In vitro and in vivo acaricidal activity and residual toxicity of spinosad to the poultry red mite, Dermanyssus gallinae. Veterinary Parasitology 173: 307-316.Google Scholar
HADADZADEH, H.R., MAJID, T.G. and MOHAMMAD, R. (2001) Evaluation of the effect of deltamethrin on Dermanysus gallinae in an egg layer house in Qom province in Iran. Scientific-Research Iranian Veterinary Journal 4: 29-35.Google Scholar
HAMA, H. (1983) Resistance to insecticides due to reduced sensitivity of acetylcholinesterase, in: GEORGHIOU, G.P. & SAITO, T. (Eds) Pest resistance to pesticides, pp. 229-231 (Plenum press, New York, NY).Google Scholar
HAMIDI, A., SHERIFI, K., MUJI, S., BEHLULI, B., LATIFI, F., ROBAJ, A., POSTOLI, R., HESS, C., HESS, M. and SPARAGANO, O. (2011) Dermanyssus gallinae in layer farms in Kosovo: A high risk for Salmonella prevalence. Parasites and Vectors 4: 136.Google Scholar
HUBER, K., ZENNER, L. and BICOUT, D.J. (2011) Modelling population dynamics and response to management options in the poultry red mite Dermanyssus gallinae (Acari: Dermanyssidae). Veterinary Parasitology 176: 65-73.Google Scholar
JACKSON, H.C. (1989) Ivermectin as a systemic insecticide. Parasitol Today 5: 146-156.Google Scholar
JONSSON, N.N. and HOPE, M. (2007) Progress in epidemiology and diagnosis of amitraz resistance in the cattle tick Boophillus microplus. Veterinary Parasitology 146: 193-198.Google Scholar
KHAMBAY, B. and JEWESS, P. (2005) Pyrethroids. Comprehensive Molecular Insect Science, Vol. 6. (IATROU, K., GILBERT, L.I. & GILL, S.S., Eds.), pp. 1-29 (Elsevier, Oxford, UK).Google Scholar
KIM, S.I., YOUNG-EUN, N., YI, J., KIM, B. and AHN, U. (2007) Contact and fumigant toxicity of oriental medicinal plant extracts against Dermanyssus gallinae (Acari: Dermanyssidae). Veterinary Parasitology 145: 377-382.Google Scholar
KOČIŠOVÁ, A. and PLACHÝ, J. (2008) Novel approach to controlling the poultry red mite (Acarina: Mesostigmata). Proceedings of the Sixth International Conference on Urban Pests, pp. 349-354. Budapest, Hungary.Google Scholar
KRAMER, T. and NAUEN, R. (2011) Monitoring of spirodiclofen susceptibility in field populations of European redmites, Panonychus ulmi (Koch) (Acari: Tetranychidae), and the cross-resistance pattern of a laboratory-selected strain. Pest Management Science, DOI 10.1002/ps.2184.Google Scholar
LAWRENCE, L.J. and CASIDA, J.E. (1983) Stereospecific action of pyrethroid insecticides on the γ- aminobutyric acid receptor-ionophore complex. Science 221: 1399-1401.Google Scholar
LI, A.Y., DAVEY, R.B., MILLER, R.J. and GEORGE, J.E. (2003) Resistance to coumaphos and diazinon in Boophillus microplus (Acari: Ixodidae) and evidence for the involvement of an oxidative detoxification mechanism. Journal of Medical Entomology 40: 482-490.CrossRefGoogle ScholarPubMed
LI, A.Y., DAVEY, R.B., MILLER, R.J. and GEORGE, J.E. (2004) Detection of amitraz resistance in the southern cattle tick, Boophilus microplus (Acari: Ixodidae). Journal of Medical Entomology 41: 193-200.Google Scholar
LIN, H., CHUAN-HUA, X., JIN-JUN, W., MING, L., WEN-CAI, L. and ZHI-MO, Z. (2009) Resistance selection and biochemical mechanism of resistance to two Acaricides in Tetranychus cinnabarinus (Boiduval). Pesticide Biochemistry and Pyhsiology 93: 47-52.Google Scholar
MARANGI, M., CAFIERO, M.A. CAPELLI, G., CAMARDA, A., SPARAGANO, O.A.E. and GIANGASPERO, A. (2009) Evaluation of the poultry red mite Dermanyssus gallinae (Acari: Dermanyssidae) susceptibility to some acaricides in field populations from Italy. Experimental and Applied Acarology 48: 11-18.Google Scholar
MAUNDER, J.C.J. (1949) Cattle tick control: Results achieved in the field with DDT and BHC. Queensland Agricultural Journal September: 1-8.Google Scholar
MAURER, V., BIERI, M. and FOLSCH, D.W. (1988) Das Suchverhalten von Dermanyssus gallinae in Hühnerställen. Host-finding of Dermanyssus gallinae in poultry -houses. Archiv fur Geflügelkunde 52: 209-215.Google Scholar
MEYER-KÜHLING, B., PFISTER, K., MÜLLER-LINDLOFF, J. and HEINE, J. (2007) Field efficacy of phoxim 50% (ByeMite) against the poultry red mite Dermanyssus gallinae in battery cages stocked with laying hens. Veterinary Parasitology 147: 289-296.Google Scholar
MISHIMA, H., KURABAYASHI, M., TAMURA, C., SATO, S. and KUWANO, H. (1975) Structures of milbemycin beta1, beta2, and beta3. Tetrahedron Letters 16: 711-714.Google Scholar
MUL, M.F. and KOENRAADT, C.J.M. (2009) Preventing introduction and spread of Dermanyssus gallinae in poultry facilities using the HACCP method. Experimental and Applied Acarology 48: 167-181.Google Scholar
MULLENS, B.A., VELTEN, R.K., HINKLE, N.C., KUNEY, D.R. and SZIJJ, C.E. (2004) Acaricide Resistance in Northern Fowl Mite (Ornithonyssus sylviarum) Populations on Caged Layer Operations in Southern California. Poultry Science 83: 365-374.Google Scholar
NARAHASHI, T. (1971) Mode of action of pyrethroids. Bulletin of World Health Organization 44: 337-345.Google Scholar
NORDENFORS, H. and HÖGLUND, J. (2000) Long term dynamics of Dermanyssus gallinae in relation to mite control measures in aviary systems for layers. British Poultry Science 41: 533-540.Google Scholar
NORDENFORS, H., HÖGLUND, J. and UGGLA, A. (1999) Effects of temperature and humidity on oviposition, molting, and longevity of Dermanyssus gallinae (Acari: Dermanyssidae). Journal of Medical Entomology 36: 68-72.Google Scholar
NORDENFORS, H., HOGLUND, J., TAUSON, R. and CHIRICO, J. (2001) Effect of permethrin impregnated plastic strips on Dermanyssus gallinae in loose-housing systems for laying hens. Veterinary Parasitology 102: 121-131.Google Scholar
OAKESHOTT, J.G., CLAUDIANOS, C., CAMPBELL, P.M., NEWCOMB, R.D. and RUSSEL, R.J. (2005) Biochemical genetics and genomics of insect esterases, in: IATROU, K., GILBERT, L.I. & GILL, S.S. (Eds) Comprehensive Molecular Insect Science, Vol. 5., pp. 309-382 (Elsevier, Oxford, UK).Google Scholar
PEREZ-COGOLLO, L.C., RODRIGUEZ-VIVAS, R.I., RAMIREZ-CRUZ, G.T. and MILLER, R.J. (2010) First report of the cattle tick Rhipicephalus microplus resistant to ivermectin in Mexico. Veterinary Parasitology 168: 165-169.Google Scholar
RAYMOND, V. and SATTELLE, D.B. (2002) Novel animal-health drug targets for ligand-gated chloride channels. Nature Reviews Drug Discovery 1: 427-436.CrossRefGoogle ScholarPubMed
ROY, L., CHAUVE, C., DELAPORTE, J., INIZAN, G. and BURONFOSSE, T. (2009a) Exploration of the susceptibility of AChE from the poultry red mite Dermanyssus gallinae (Acari: Mesostigmata) to organophosphates in field isolates from France. Experimental and Applied Acarology 48: 19-30.Google Scholar
ROY, L., DOWLING, A.P.G., CHAUVE, C.M. and BURONFOSSE, T. (2009b) Delimiting species boundaries within Dermanyssus Duges, 1834 (Acari:Dermanyssidae) using a total evidence approach. Molecular Phylogenetics and Evolution 50: 446-470.Google Scholar
ROY, L., DOWLING, A.P.G., CHAUVE, C.M., LESNA, I., SABELIS, M.W. and BURONFOSSE, T. (2009c) Molecular phylogenetic assessment of host range in five Dermanyssus species. Experimental and Applied Acarology 48: 115-142.Google Scholar
ROY, L. and BURONFOSSE, T. (2011) Using mitochondrial and nuclear sequence data for disentangling population structure in complex pest species: a case study with Dermanyssus gallinae. PLoS ONE 6: e22305. doi:10.1371/journal.pone.0022305.Google Scholar
SMISSAERT, H.R. (1964) Cholinesterase inhibition in spider mites susceptible + resistant to organophosphate. Science 143: 129-131.Google Scholar
STAFFORD, K.A., LEWIS, P.D. and COLES, G.C. (2006) Preliminary study of intermittent lighting regimes for red mite (Dermanyssus gallinae) control in poultry houses. Veterinary Record 158: 762-763.Google Scholar
TAKIGUCHI, Y., MISHNA, H., OKUDA, M. and TENAO, M. (1980) Milbemycins, a new family of macrolide antibiotics: fermentation, isolation and physico-chemical properties. Journal of Antibiotics 33: 1120-1127.Google Scholar
THIND, B.B. and FORD, H.L. (2007) Assessment of susceptibility of the poultry red mite Dermanyssus gallinae (Acari: Dermanyssidae) to some acaricides using an adapted filter paper based bioassay. Veterinary Parasitology 144: 344-348.CrossRefGoogle ScholarPubMed
THIND, B.B. and MUGGLETON, J. (1998) A new bioassay method for the detection of resistance to pesticides in the stored product mite Acarus siro (Acari: Acaridae). Experimental and Applied Acarology 22: 543-552.Google Scholar
TUCCI, E.C., PRADO, A.P. and ARAÚJO, R.P. (2008) Development of Dermanyssus gallinae (Acari: Dermanyssidae) at different temperatures. Veterinary Parasitology 155: 127-132.Google Scholar
VALIENTE-MORO, C., DE LUNA, C.J., TOD, A., GUY, J.H., SPARAGANO, O.A.E. and ZENNER, L. (2009) The poultry red mite (Dermanyssus gallinae): a potential vector of pathogenic agents. Experimental and Applied Acarology 48: 93-104.Google Scholar
VALIENTE-MORO, C., FRAVALO, P., AMELOT, M., CHAUVE, C., SALVAT, G. and ZENNER, L. (2010) Experimental studies on the potential role of the poultry red mite, Dermanyssus gallinae, as a vector of Salmonella serotype Enteritidis. Trends in Acarology 15: 521-525.Google Scholar
VAN LEEUWEN, T., VONTAS, J. and TSAGKARAKOU, A. (2009) Mechanisms of acaricide resistance in the two spotted spider mite Tetranychus urticae, in: ISHAAYA, I. & HOROWITZ, A.R. (Eds) Biorational Control of Arthropod Pests, pp. 347-393 (Springer, The Netherlands).Google Scholar
VAN LEEUWEN, T., WITTERS, J., NAUEN, R., DUSO, C. and TIRRY, L. (2010) The control of eriophyid mites: state of the art and future challenges. Experimental and Applied Acarology 51: 205-224.Google Scholar
WANG, F.F., WANG, M., XU, F.R., LIANG, D.M. and PAN, B.L. (2010) Survey of prevalence and control of ectoparasites in caged poultry in China. Veterinary Record 167: 934-937.Google Scholar
WARE, G.W. (2000) The Pesticide Book, 5th ed. Thomson Publications, Fresno, California.Google Scholar
WEILL, M., FORT, P., BERTHOMIEU, A., DUBOIS, M.P., PASTEUR, N. and RAYMOND, M. (2002) A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proceedings of the Royal Society B-Biological Sciences 269: 2007-2016.Google Scholar
ZEMAN, P. and ZELEZNY, J. (1985) The susceptibility of the poultry red mite Dermanyssus gallinae (De Geer 1778) to some acaricides under laboratory conditions. Experimental and Applied Acarology 1: 17-22.Google Scholar
ZEMAN, P. (1987a) Systemic efficacy of ivermectin against Dermanyssus gallinae (De Geer, 1778) in fowls. Veterinary Parasitology 23: 141-146.Google Scholar
ZEMAN, P. (1987b) Encounter the poultry red mite resistance to acaricides in Czechoslovak poultry farming. Folia Parasitologica 34: 369-373.Google ScholarPubMed
ZHU, F., PARTHASARATHY, R., BAI, H., WOITHE, K., KAUSSMANN, M., NAUEN, R., HARRISON, D.A. and SUBBA R.P. (2010) . A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum. PNAS 107: 8557-8562.Google Scholar