Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T13:22:19.838Z Has data issue: false hasContentIssue false

The avian heterophil leucocyte: a review

Published online by Cambridge University Press:  18 September 2007

M.H. Maxwell
Affiliation:
Roslin Institute (Edinburgh), Roslin, Midlothian EH 25 9PS, UK
G.W. Robertson
Affiliation:
Roslin Institute (Edinburgh), Roslin, Midlothian EH 25 9PS, UK
Get access

Abstract

This review examines the avian heterophil leucocyte and provides a morphological and cytochemical profile drawn from light and electron microscopy studies of these cells and their characteristic cytoplasmic granules. Other aspects covered include relative and absolute heterophil counts in different avian species and the response of heterophils to stress and to acute inflammation. Heterophils are round cells and, with Romanowsky stains, their primary fusiform granules appear brick-red in colour. A secondary type of round granule, less dense in the electron microscope and smaller than the primary granule, can be seen in most avian species. The primary granules frequently display a ‘central body’ that may be proteinaceous in nature. Unlike mammalian neutrophils, avian heterophils are devoid of myeloperoxidase. However, their cytoplasmic granules contain several lysosomal and non-lysosomal enzymes including acid phosphatase, arylsulphatase, β-glucuronidase, phosphorylase, uridine diphosphate glucose-glucogen glycosyltrans-ferase, neutral and acid α-glucosidases, acid trimetaphosphatase and lysozyme. In the majority of birds heterophils are the second most numerous cell in circulation, the exceptions being several species of the Psittacine and Anseriformes orders, ostrich, ring-necked pheasant, pigeon and rosy flamingo. Heterophils generally outnumber lymphocytes in chicks between hatch and one week of age. Their numbers increase during mildly or moderately stressful conditions and consequently the heterophil/ymphocyte ratio can be used to detect the presence of physiological stress for most stressors. A heteropenia can occur, however, during severe stress. Heterophils respond to a stimulus (chemotactic agent) within about 30 minutes during the early inflammatory phase and they may also have sensitive and selective phagocytosing properties. By seven days heterophils become unrecognizable and, with macrophage recruitment, the characteristic heterophilic granuloma develops.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allsep, T., Wiggins, M. and Birrenkott, G. (1990) Normal growth and white blood cell development in large white turkey embryos. Poultry Science 60: 20272034CrossRefGoogle Scholar
Allsep, T., Wiggins, M. and Birrenkott, G. (1992) The effects of cooling large white turkey embryos and white blood cell development. Poultry Science 71: 460466CrossRefGoogle ScholarPubMed
Al-Murrani, W.K., Kassab, A., Al-Sam, H.Z. and Al-Athari, A.M.K. (1997) Herterophil/ lymphocyte ratio as a selection criterion for heat resistance in domestic fowls. British Poultry Science 38: 159163CrossRefGoogle ScholarPubMed
Amand, W.B. (1986) Avian clinical hematology and blood chemistry. In: Zoo and Wild Animal Medicine (Fowler, M.E., Ed.), W.B. Saunders Co., Philadelphia, 264276Google Scholar
Andreasen, C.B. and Latimer, K.S. (1989) Separation of avian heterophils from blood using Ficoll-Hypaque discontinuous gradients. Avian Diseases 33: 163167CrossRefGoogle ScholarPubMed
Andreasen, C.B. and Latimer, K.S. (1990) Cytochemical staining characteristics of chicken heterophils and eosinophils. Veterinary Clinical Pathology 19: 5154CrossRefGoogle ScholarPubMed
Andreasen, C.B., Latimer, K.S. and Steffens, W.L. (1990) Evaluation of chicken heterophil adherence. Avian Diseases 34: 639642CrossRefGoogle ScholarPubMed
Andreasen, C.B., Andreasen, J.R. Jr., Sonn, A.E. and Oughton, J.A. (1996) Comparison of the effect of different opsonins on the phagocytosis of fluorescein-labeled staphylococcal bacteria by chicken heterophils. Avian Diseases 40: 778782CrossRefGoogle ScholarPubMed
Andreasen, C.B., Latimer, K.S., Harmon, B.G., Glisson, J.R., Golden, J.M. and Brown, J. (1991) Heterophil function in healthy chickens and in chickens with experimentally induced staphylococcal tenosynovitis. Veterinary Pathology 28: 419427.CrossRefGoogle ScholarPubMed
Asaoka, H., Nishinaka, S., Wakamiya, N., Matsuda, H. and Murata, M. (1992) Two chicken monoclonal antibodies specific for heterophil Hauganuziu-Deicher antigens. Immuno-logical Letters 32: 9196.CrossRefGoogle ScholarPubMed
Atwal, O.S. and McFarland, L.Z. (1966) A morphologic and cytochemical study of erythrocytes and leucocytes of Coturnix coturnix japonica. American Journal of Veterinary Research 27: 10591065Google ScholarPubMed
Atwal, O.S., McFarland, L.Z. and Wilson, W.O. (1964) Hematology of Coturnix from birth to maturity. Poirltry Science 43: 13921401CrossRefGoogle Scholar
Austin, J.H. and Bischel, M. (1961) A histochemical method for sulfatase activity in hemic cells and organ imprints. Blood 17: 216224CrossRefGoogle ScholarPubMed
Awadhiya, R.P., Vegad, J.L. and Kolte, G.N. (1980) Studies on acute inflammation in the chicken using mesentery as a test system. Research in Veterinary Science 29: 172180CrossRefGoogle ScholarPubMed
Awadhiya, R.P., Vegad, J.L. and Kolte, G.N. (1981a) A microscopic study of increased vascular permeablility and leukocyte emigration in the chicken wing web. Research in Veterinary Science 31: 231235CrossRefGoogle Scholar
Awadhiya, R.P., Vegad, J.L. and Kolte, G.N. (1981b) A microscopic study of increased vascular permeability and leukocyte emigration in thermal injury in the chicken skin. Avian Pathology 10: 313320CrossRefGoogle ScholarPubMed
Bainton, D.F. and Farquhar, M.G. (1968) Differences in enzyme content of azurophil and specific granules of polymorphonuclear leucocytes. II. Cytochemistry and electron microscopy of bone marrow cells. Journal of Cell Biology 39: 299317CrossRefGoogle ScholarPubMed
Barnett, J.L. and Hemsworth, P.H. (1990). The validity of physiological and behavioural measures of animal welfare. Applied Animal Behavior Science 25: 177187CrossRefGoogle Scholar
Bautista-Ortega, J. (1996). Studies of the relationship between hatching times and pre-ascitic lesions in young broilers. MSc. Thesis, University of EdinburghGoogle Scholar
Beuving, G., Jones, R.B. and Blokhuis, H.J. (1989) Adrenocortical and heterophil/lymphocyte responses to challenge in hens showing short or long tonic immobility reactions. British Poultry Science 30: 175184CrossRefGoogle ScholarPubMed
Blount, W.P. (1939) The blood picture at birth in the chick. Veterinary Journal 95: 193195Google Scholar
Brake, J., Baker, M., Morgan, G.W. and Thaxton, P. (1982) Physiological changes in caged layers during a forced molt. 4. Leucocytes and packed cell volume. Poultry Science 61: 790795CrossRefGoogle ScholarPubMed
Breton-Gorius, J., Coquin, Y. and Guichard, J. (1978) Cytochemical distinction between azurophils and catalase-containing granules in leukocytes. I Studies in developing neutrophils and monocytes from patients with myeloperoxidase deficiency: comparison with peroxidase-deficient chicken heterophils. Laboratory Investigation 38: 2131Google ScholarPubMed
Brooks, R.L. Jr., Bounous, D.I. and Andreasen, C.B. (1996) Functional comparison of avian heterophils with human and canine neutrophils. Comparative Haematology International 6: 153159CrossRefGoogle Scholar
Brown, A.F. (1979) The Incubation Book. SAIGA, Surrey, UKGoogle Scholar
Brune, K. and Spitznagel, J.K. (1973) Peroxidaseless chicken leukocytes: isolation and characterization of antibacterial granules. Journal of Infectious Diseases 127: 8494CrossRefGoogle ScholarPubMed
Brune, K., Leffell, M.S. and Spitznagel, J.K. (1972) Microbicidal activity of peroxidaseless chicken heterophile leukocytes. Infection and Immunity 5: 283287CrossRefGoogle ScholarPubMed
Burton, R.R. and Harrison, J.S. (1969) The relative differential leucocyte count of the newly hatched chick. Poultry Science 48: 451453CrossRefGoogle ScholarPubMed
Burton, R.R., Sahara, R.and Smith, A.H. (1972) The hematology of domestic fowl native to high altitude. Environmental Physiology 1: 155163Google Scholar
Campbell, F. (1967) Fine structure of the bone marrow of chicken and pigeon. Journal of Morphology 123: 405439CrossRefGoogle ScholarPubMed
Campbell, T.W. (1995) Avian Hematology and Cytology, 2nd Ed, Iowa State University Press, Ames, IowaGoogle Scholar
Campbell, T.W. and Coles, E.H. (1986) Avian clinical pathology. In Veterinary Clinical Pathology, 4th Ed., W.B. Saunders & Co., Philadelphia, 279301Google Scholar
Campbell, T.W. and Dein, F.J. (1984) Avian hematology, the basics. Veterinary Clinics of North America: Small Animal Practice 14: 223248CrossRefGoogle ScholarPubMed
Campo, J.L. and Redondo, A. (1996) Tonic immobility reaction and heterophil to lymphocyte ratio in hens from three Spanish breeds laying pink eggshells. Poultry Science 75: 155159CrossRefGoogle ScholarPubMed
Carlson, H.C. (1972) The acute inflammatory reaction in chicken breast muscle. Avian Diseases 16: 553558CrossRefGoogle ScholarPubMed
Carlson, H.C. and Allen, J.R. (1969) The acute inflammatory reaction in chicken skin: blood cellular response. Avian Diseases 13: 817833CrossRefGoogle ScholarPubMed
Caxton-Martins, A.E. and Daimon, T. (1976) Histochemical observations on chicken blood and bone marrow cells. Journal of Anatomy 122: 553558Google ScholarPubMed
Chang, C.F. and Hamilton, P.B. (1979) The thrombocyte as the primary circulating phagocyte in chickens. Journal of the Reticuloeizdothelial Society 25: 585590Google ScholarPubMed
Chang, C.F. and Hamilton, P.B. (1980) Impairment of phagocytosis by heterophils from chickens during ochratoxicosis. Applied and Environmental Microbiology 39: 572575CrossRefGoogle ScholarPubMed
Conlon, P.Smith, D. and Gowlett, T. (1991) Oxygen radical production by avian leukocytes. Canadian Journal of Veterinary Research 55: 193195Google ScholarPubMed
Daimon, T. and Caxton-Martins, A. (1977) Electron microscopic and enzyme cytochemical studies on granules of mature chicken granular leucocytes. Journal of Anatomy 123: 553562Google ScholarPubMed
Davis, T. and Shall, S. (1995) Sequence of a chicken erythroblast mono (ADP-ribosyl) transferase-encoding gene and its upstream region. Gene 164: 371372CrossRefGoogle ScholarPubMed
Davison, T.F., Rowell, J.G. and Rea, J. (1983) Effects of dietary corticosterone on peripheral blood lymphocytes and granulocyte populations in immature domestic fowl. Researck in Veterinary Science 34: 236239CrossRefGoogle ScholarPubMed
Dawson, A.B. (1953) Histochemical evidence of early differentation of the chick. Journal of Morphology 92: 579595CrossRefGoogle Scholar
Dein, F.J. (1984) Laboratory Manual of Avian Hematology. Association of Avian Veterinarians, East Northport, NYGoogle Scholar
Dein, F.J. (1986) Hematology. In: Clinical Avian Medicine and Surgery including Aviculture (Harrison, G.J. and Harrison, L.R., Eds), W.B.Saunders Co., Philadelphia, 174191Google Scholar
Desmidt, M., Van Nerom, A., Haesebrouck, F., Ducatell, R. and Ysebaert, M.T. (1996) Oxygenation activity of chicken blood phagocytes as measured by luminol- and lucigenin- dependent chemiluminescence. Veterinary Immunology and Immuno-pathology 53: 303311CrossRefGoogle ScholarPubMed
Dhinakar Raj, G., Savage, C.E. and Jones, R.C. (1997) Effect of heterophil depletion by 5-fluorourcil on infectious bronchitis virus infection in chickens. Avian Pathology 26: 427432Google Scholar
Dhingra, L.D., Parrish, W.B. and Venzke, W.G. (1969) Electron microscopy of granular leucocytes of chicken (Gallus domesticus). American Journal of Veterinary Research 30: 637642Google ScholarPubMed
Dhodapkar, B.S., Vegad, J.L. and Kolte, G.N. (1982) Demonstration of the phagocytic activity of chicken basophils in the reversed Arthus reaction using colloidal carbon. Research in Veterinary Science 33: 377379CrossRefGoogle ScholarPubMed
Dhodapkar, B.S., Vegad, J.L. and Kolte, G.N. (1983) Pathology of the active Arthus reaction in the chicken. Research in Veterinary Science 35: 259272CrossRefGoogle ScholarPubMed
Dhodapkar, B.S., Vegad, J.L.Dhanedkar, R.G. and Kolte, G.N. (1984) Pathology of reversed passive Arthus reaction in the chicken. Avian Pathology 13: 93108CrossRefGoogle ScholarPubMed
Dusbabek, F., Skarkova-Spakova, V., Vitovel, J. and Sterba, J. (1988) Cutaneous and blood leucocyte response of pigeons to larval Argas polonicus feeding. Folia Parasitologica 35: 259268Google ScholarPubMed
Edwards, J.L., Murphy, R.C. and Cho, Y. (1975) On the development of the lymphoid follicles of the bursa of Fabricius. Anatomical Record 181: 735754CrossRefGoogle ScholarPubMed
Egami, M.I. and Sasso, W.S. (1991) Topochemistry of blood cells of the Gallus domesticus (Aves, Galliforme). Review of Brazilian Biology 51: 211214Google ScholarPubMed
Ehrlich, P. (1879) Uber die specifischen Granulationen des Blutes. Archives of Anatomy and Physiology of Leipzig 3: 571579Google Scholar
Enbergs, H. (1973) Die Feinstruktur der Leukozyten der Ente (Anas platyrhynchos dom.) Berlin Munch Tieräztliche Wochenschrift 86: 285289Google ScholarPubMed
Enbergs, H. and Kriesten, K. (1968) Die weissen Blutzellen de Haushuhns in elektronen- mikroskopischen Bild. Deutsche Tierärtliche Wochschrift 75: 271274Google Scholar
Ericsson, J.L.E. and Nair, M.K. (1973) Electron microscopic demonstration of acid phosphatase activity in the developing and mature heterophils of the chicken. Histochemie 37: 97105CrossRefGoogle ScholarPubMed
Evans, E.W., Beach, G.G., Wunderlich, J. and Harmon, B.G. (1994) Isolation of antimicrobial peptides from avian heterophils. Journal of Leukocyte Biology 56: 661665CrossRefGoogle ScholarPubMed
Ferris, M. and Bacha, W.J. (1986) Response of leukocytes in chickens infected with the avian schistosome Austvobilharzia variglandis (Trematoda). Avian Diseases 30: 683686CrossRefGoogle ScholarPubMed
Forster, Von Dr. (1861). Fall von vorweigend lymphatischer leukämie. Virchows Archiv für pathologische Anatomie and Physiologie and für klinische Medizin 20: 399402Google Scholar
Fredrickson, T.N., Chute, H.L. and O'Meara, D.C. (1957) Preliminary investigations on the hematology of broiler flocks. Avian Diseases 1: 6774CrossRefGoogle Scholar
Fujimori, K., Yamada, M. and Imai, K. (1979) Distribution of neutral and acid α-glucosidases of granule fractions from chicken heterophil leucocytes. Cellular and Molecular Biology 23: 391402Google Scholar
Fulton, R.M., Reed, W.M., Thacker, H.L. and Denicola, D.B. (1996) Cyclophasphamide (Cytoxan)-induced hematologic alterations in specific-pathogen-free chickens. Avian Diseases 40: 112CrossRefGoogle Scholar
Glick, B. and Rosse, C. (1976) Cellular composition of the bone marrow in the chicken. 1. Identification of cells. Anatomical Record 185: 235246CrossRefGoogle Scholar
Goff, S., Russell, W.C. and Taylor, M.W. (1953) Hematology of the chick in vitamin deficiences. 1. Riboflavine. Poultry Science 32: 5460CrossRefGoogle Scholar
Gross, W.B. (1984) Differential and total avian blood cell counts by the hemacytometer method. Avian/Exotic Practice 1: 3136Google Scholar
Gross, W.B. (1993). Chicken-environment interactions. In Ethics and Animals (Miller, H.B. and Williams, W.H., Eds), Humana Press, Clifton, New Jersey, pp. 329337Google Scholar
Gross, W.B. and Siegel, H.S. (1983) Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Diseases 27: 972979CrossRefGoogle ScholarPubMed
Gross, W.B. and Siegel, P.B. (1985) Selective breeding of chickens for corticosterone response to social stress. Poultry Science 64: 22302233CrossRefGoogle ScholarPubMed
Gross, W.B. and Siegel, P.B. (1993) General principles of stress and welfare. In Livestock, Handling and Transport (Grandin, T., Ed.), CAB International Wallingford, UK, pp. 2134Google Scholar
Hamre, J. (1952) Origin and differentiation of heterophil, eosinophil and basophil leucocytes of chickens. Anatomical Record 112: 339340Google Scholar
Hamrick, P.E., Zinkl, J.G., McRee, D.I., Thaxton, P. and Parkhurst, C.R. (1975) Leukopenia in neonatal Japanese quail. Poultry Science 54: 312314CrossRefGoogle ScholarPubMed
Hahn, H. and Kaufmann, H.E. (1981) The role of cell-mediated immunity in bacterial infections. Reviews in Infectious Diseases 36: 12211250CrossRefGoogle Scholar
Harmon, B.G., Glisson, J.R. and Nunnally, J.C. (1992) Turkey macrophage and heterophil bactericidal activity against Pasteurella multocida. Avian Diseases 36: 986991CrossRefGoogle ScholarPubMed
Hawkey, C.M. and Dennett, T.B. (1989) A Colour Atlas of Comparative Veterinary Haematology, Wolfe Publishing Limited, LondonGoogle Scholar
Hawkey, C.M., Pugsley, S.L. and Knight, J.A. (1984a) Abnormal heterophils in a king shag with aspergillosis. Veterinary Record 114: 322324CrossRefGoogle Scholar
Hawkey, C.M., Hart, M.G., Samour, H.J., Knight, J.A. and Hutton, R.E. (1984b) Haematological findings in healthy and sick captive rosy flamingos (Phoenicopterus ruber ruber). Avian Pathology 131: 163172CrossRefGoogle Scholar
Hayat, M.A. (1989) Principles and Techniques of Electron Microscopy: Biological Applications, 3rd Ed, Macmillan Press Ltd, LondonGoogle Scholar
Heuck, G. (1879) Zwei fälle von Leukämie mit eigenthümlichem Blut-resp. Knochenmarksbefund. Virchows Archiv, für pathologische Anatomie and Phyiologie and für klinische Medizin 78: 475496Google Scholar
Hewitt, R. (1942) Studies on the host-parasite relationships of untreated infections with Plasmodium lophurae in ducks. American Journal of Hygiene 36: 642Google Scholar
Hirsch, J.G. (1962) Cinemicrophotographic observations on granule lysis in polymorphonuclear leucocytes during phagocytosis. Journal of Experimental Medicine 116: 827833CrossRefGoogle ScholarPubMed
Hocking, P.M., Maxwell, M.H. and Mitchell, M.A. (1993) Welfare assessment of broiler breeder and layer females subjected to food restriction and limited access to water during rearing. British Poultry Science 34: 443458CrossRefGoogle Scholar
Hocking, P.M., Maxwell, M.H. and Mitchell, M.A. (1994). Haematology and blood composition at two ambient temperatures in genetically fat and lean adult broiler breeder females fed ad libitum or restricted throughout life. British Poultry Science 35: 799807CrossRefGoogle ScholarPubMed
Hocking, P.M., Maxwell, M.H. and Mitchell, M.A. (1996) Relationships between the degree of food restriction and welfare indices in broiler breeder females. British Poultry Science 37: 263278CrossRefGoogle ScholarPubMed
Hunt, T.E. and Hunt, E.A. (1959) Blood basophils of cockerels before and after intravenous injection of compound 48/80. Anatomical Record 133: 1933CrossRefGoogle Scholar
Janes, M.E., Bower, R.K. and Anthony, N.B. (1994) The leukocyte response of Japanese quail to Rous sarcoma virus-induced tumors. Avian Diseases 38: 610615CrossRefGoogle ScholarPubMed
Johnson, E.P. and Lange, C.J.(1939) Blood alterations in typhlohepatitis of turkeys with notes on the disease. Journal of Parasitology 25: 157167CrossRefGoogle Scholar
Jones, R.B. (1989) Chronic stressors, tonic immobility and leucocytic responses in the domestic fowl. Physiology and Behnoiour 46: 439442CrossRefGoogle ScholarPubMed
Jones, R.B., Beuving, G. and Blokhuis, H.J. (1988) Tonic immobility and heterophil/lymphoctye responses of the domestic fowl to corticosterone infusion. Physiology and Behavionr 42: 249253CrossRefGoogle Scholar
Jortner, B.S. and Adams, W.R. (1971) Turpentine-induced inflammation in the chicken. A light- and electron-microscope study, with emphasis on the macrophage epitheloid cell, and multi- nucleated giant cell reaction. Avian Diseuses 15: 533549CrossRefGoogle Scholar
Jover, F.P. (1954) The peroxidases of avian leucocytes. Xth World's Poultry Congress, Madrid, Spain206207Google Scholar
Kaleta, E.F. and Bernhardt, D. (1968) Beitrag zur Hamatologie der Gans. Archiv für Geflügekunde 32: 8490Google Scholar
Katanbaf, M.N., Jones, D.E., Dunnington, E.A., Gross, W.B. and Siegel, P.B. (1988) Anatomical and physiological responses of early and late feathering broiler chickens to various feeding regimes. Archiv für Geflügekunde 52: 119126Google Scholar
Katiyar, A.K., Vegad, J.L. and Awadhiya, R.P. (1992a) Increased vascular permeability and leucocyte emigration in Escherichia coli endotoxin injury in the chicken skin. Reseurch in Veterinary Science 52: 154161CrossRefGoogle ScholarPubMed
Katiyar, A.K., Vegad, J.L. and Awadhiya, R.P. (1992b) Pathology of inflammatory-reparative response in punched wounds of the chicken skin. Avian Pathology 21: 471480CrossRefGoogle ScholarPubMed
Kelenyi, G. and Nemeth, A. (1969) Comparative histochemistry and electron microscopy of the eosinophil leucocytes of vertebrates. Acta Biologica Acadamiae Scientiarum Hungaricae 20: 405422Google ScholarPubMed
Kelly, J.W. and Dearstyne, R.S. (1935) Hematology of the fowl. A. Studies on normal chick and normal adult blood. B.Studies on the hematology of chicks suffering from pullorum infection and on adult carriers of pullorum disease. North Carolina Agricultural and Experimental Station Technical Bulletin 50: 69Google Scholar
Kennedy, W.P. and Climenko, D.R. (1928) Studies on the blood of birds. I. The corpuscles of the pigeon. Quarterly Journal of Experimental Physiology 19: 4349CrossRefGoogle Scholar
Klasing, K. (1991) Avian inflammatory response: mediation by macrophages. Poultry Science 70: 11761186CrossRefGoogle ScholarPubMed
Klasing, K. (1996) Immunomodulation in poultry. In Poultry Immunology (Davison, T.F., Morris, T.R. and Payne, L.N., Eds), Poultry Science Symposium Series 24, pp. 329341Google Scholar
Klebanoff, S.J. (1967) lodination of bacteria. A bacterial mechanism. Journal of Experimental Medicine 126: 10631078CrossRefGoogle Scholar
Kogut, M.H., Tellez, G., Hargis, B.M., Corrier, D.E. and Deloach, J.R. (1993) The effect of 5-fluorouracil treatment of chicks: a cell depletion model for the study of avian poly- morphonuclear leukocytes and natural host defenses. Poultry Science 72: 18731880CrossRefGoogle Scholar
Kogut, M.H., McGruder, E.D., Hargis, B.M., Corrier, D.E. and Deloach, J.R. (1994a) Dynamics of avian inflammatory response to Salmonella-immune lymphokines. Inflammation 18: 373388CrossRefGoogle ScholarPubMed
Kogut, M.H., Tellez, G.I., McGruder, E.D., Hargis, B.M., Williams, J.D., Corrier, D.E. and Deloach, J.R. (1994b) Heterophils are decisive components in the early responses of chickens to Salmonella enteritidis infections. Microbial Pathogenesis 16: 141151CrossRefGoogle ScholarPubMed
Kogut, M.H., McGruder, E.D., Hargis, B.M., Corrier, D.E. and Deloach, J.R. (1995a) In vivo activation of heterophil function in chickens following infection with Salmonella enteritidis- immune lymphokines. Journal of Leukocyte Biology 57: 5662CrossRefGoogle ScholarPubMed
Kogut, M.H., McGruder, E.D., Hargis, B.M., Corrier, D.E. and Deloach, J.R. (1995b) Characterisation of the pattern of inflammatory cell influx in chicks following the intra-peritoneal administration of live Salmonella enteritidis and Salmonella enteritidis-immune lymphokines. Poultry Science 74: 817CrossRefGoogle Scholar
Kogut, M.H., Moyes, R. and Deloach, J.R. (1997) Neutralization of G-CSF inhibits ILK-induced heterophil influx: granulocyte-colony stimulating factor mediates the Salmonella enteritidis-immune lymphokine potentiation of the acute avian inflammatory response. Inflammation 21: 925CrossRefGoogle ScholarPubMed
Lam, K.M. (1996) Newcastle disease virus-induced apoptosis in the peripheral blood mononuclear cells of chickens. Journal of Comparative Pathology 114: 6371CrossRefGoogle ScholarPubMed
Lam, K.M., Kabbur, M.B. and Eiserich, J.P. (1996) Newcastle disease virus-induced functional impairments and biochemical changes in chicken heterophils. Veterinary Immunology and Immunopathology 53: 13327CrossRefGoogle ScholarPubMed
Lane, R. (1987) Abnormal findings in avian hematology. Proceedings First International Conference on Zoological and Avian Medicine,HawaüGoogle Scholar
Latimer, K.S., Tang, K-N., Goodwin, M.A., Steffens, W.L. and Brown, J. (1988) Leukocyte changes associated with acute inflammation in chickens. Avian Diseases 32: 760772CrossRefGoogle ScholarPubMed
Latimer, K.S., Kircher, I.M. and Andreasen, C.B. (1989) Separation of turkey heterophils from blood using two-step Ficoll-Hypaque discontinuous gradients. Avian Diseases 33: 571573CrossRefGoogle ScholarPubMed
Latimer, K.S., Harmon, B.G., Glisson, J.R., Kircher, I.M. and Brown, J. (1990) Turkey heterophil chemotaxis to Pasteurella multocida (serotype 3,4)-generated chemotaxic factors. Avian Diseases 34: 137140CrossRefGoogle Scholar
Lawn, A.M. (1979) Haemopoietic cells in peripheral nerves of SPF chickens. Avian Pathology 8: 477481CrossRefGoogle ScholarPubMed
Levi, A., Perelman, B., Waner, T., VAN Grevenbroek, M., VAN Creveld, C. and Yagil, R. (1989) Haematological parameters of the ostrich (Struthio camelus). Avian Pathology 18: 321327CrossRefGoogle Scholar
Lewis, J.H., Hasiba, U. and Spero, J.A. (1979) Comparative hematology: studies on class Aves, domestic turkey (Meleagris gallopavo). Comparative Biochemistry and Physiolopy 62A: 735745CrossRefGoogle Scholar
Lucas, A.M. and Jamroz, C. (1961) Atlas of Avian Hematology. Agriculture Monograph 25, United States Department of Agriculture, WashingtonGoogle Scholar
Macrae, E.K. and Spitznagel, J.K. (1975) Ultrastructural localization of cationic proteins in cytoplasmic granules of chicken and rabbit polymorphonuclear leukocytes. Journal of Cell Science 17: 7994CrossRefGoogle ScholarPubMed
Magath, T.B. and Higgins, G.M. (1934) The blood of the normal duck. Folia Haematologica 51: 230241Google Scholar
Maxwell, M.H. (1973) Comparison of heterophil and basophil ultrastructure in six species of domestic bird. Journal of Anatomy 115: 187202Google Scholar
Maxwell, M.H. (1978) The fine structure of granules in eosinophil leucocytes from aquatic and terrestrial birds. Tissue and Cell 10: 303317CrossRefGoogle ScholarPubMed
Maxwell, M.H. (1979) The ultrastructure of the eosinophil granules of the black-necked crowned crane. Journal of Anatomy 128: 5363Google ScholarPubMed
Maxwell, M.H. (1981) Leucocyte diurnal rhythms in normal and pinealectomised juvenile female fowls. Research in Veterinary Scicrice 31: 113115CrossRefGoogle ScholarPubMed
Maxwell, M.H. (1984a) Histochemical identification of tissue eosinophils in the inflammatory response of the fowl (Callus domesticus). Research in Veterinary Science 37: 711CrossRefGoogle Scholar
Maxwell, M.H. (1984b) The distribution and localisation of acid trimetaphosphatase in developing heterophils and eosinophils in the bone marrow of the fowl and the duck. Cell and Tissue Research 235: 171176CrossRefGoogle ScholarPubMed
Maxwell, M.H. (1985a) Heterophilic leucocytes are the predominant granulocytes in the ovary and ultimobranchial glands of the adult fowl. Research in Veterinary Science 39: 119121CrossRefGoogle ScholarPubMed
Maxwell, M.H. (1985b) Granulocyte differentiation in the lymphoid organs of chick embryos after antigenic and mitogenic stimulation. Developmental and Comparative Immunology 9: 93106CrossRefGoogle ScholarPubMed
Maxwell, M.H. (1985c) Studies on the avian eosinophil leucocyte with special reference to its stimulation, PhD Thesis, University of StrathclydeGoogle Scholar
Maxwell, M.H. (1987) The avian eosinophil – a review. World's Poultry Science Journal 43: 190207CrossRefGoogle Scholar
Maxwell, M.H. (1993) Avian blood leucocyte responses to stress. World's Poultry Science Journal 49: 3443CrossRefGoogle Scholar
Maxwell, M.H. and Martindale, L. (1985) Electron microscopy of the juxtaglomerular apparatus in young fowl fed a salt-deficient diet. Research in Veterinary Science 39: 340352CrossRefGoogle ScholarPubMed
Maxwell, M.H. and Robertson, G.W. (1995) The avian basophilic leukocyte: a review. World's Poultry Science Journal 51: 307325CrossRefGoogle Scholar
Maxwell, M.H. and Siller, W.G. (1972) The ultrastructural characteristics of the eosinophil granules in six species of domestic bird. Journal of Anatomy 112: 289303Google ScholarPubMed
Maxwell, M.H. and Trejo, F. (1970) The ultrastructure of white blood cells and thrombocytes of the domestic fowl. British Veterinary Journal 126: 583592CrossRefGoogle ScholarPubMed
Maxwell, M.H., Hocking, P.M. and Robertson, G.W. (1992b) Differential leucocyte responses to various degrees of food restriction in broilers, turkeys and ducks. British Poultry Science 33: 177187CrossRefGoogle ScholarPubMed
Maxwell, M.H., Tullett, S.G. and Burton, F (1987) A haematological and morphological study of young broiler chicks with experimentally-induced hypoxia. Research in Veterinary Science 43: 331338CrossRefGoogle Scholar
Maxwell, M.H., Robertson, G.W., Mitchell, M.A. and Carlisle, A.J. (1992a) The fine structure of broiler chicken blood cells, with particular reference to basophils, after severe heat stress. Comparative Haematology International 2: 190200CrossRefGoogle Scholar
Maxwell, M.H., Robertson, G.W., Moseley, D. and BAUTISTA-Ortega, J. (1997) Further characterisation of embryonic cardiac-derived troponin T in broiler chicks bled one-168 hours post-hatch. Research in Veterinary Science 62: 127130CrossRefGoogle Scholar
Maxwell, M.H., Robertson, G.W., Spence, S. and McCorquodale, C.C. (1990a) Comparison of haematological values in restricted- and ad libitum-fed domestic fowls: white blood cells and thrombocytes. British Poultry Science 31: 399405CrossRefGoogle Scholar
Maxwell, M.H., Spence, S., Robertson, G.W. and Mitchell, M.A. (1990b) Haematological and morphological responses of broiler chicks to hypoxia. Avian Pathology 19: 2340CrossRefGoogle ScholarPubMed
Maxwell, M.H., Robertson, G.W., Anderson, I.A., Dick, L.A. and Lynch, M. (1991) Haematology and histopathology of seven-week-old broilers after early food restriction. Research in Veterinary Science 50: 290297CrossRefGoogle ScholarPubMed
Mazia, D.F., Brewer, P.A. and Alfert, M. (1965) Histochemistry (Barka, T. and Anderson, P.J., Eds), Harper and Row Publishers, New York.Google Scholar
McGruder, E.D., Kogut, M.H., Corrier, D.E., Deloach, J.R. and Hargis, B.M. (1995b) Interaction of dexamethasone and Salmonella enteritidis immune lymphokines on Salmonella enteritidis organ invasion and in vitro polymorphonuclear leukocyte function. Immunology and Medical Microbiology 11: 2534CrossRefGoogle ScholarPubMed
McGruder, E.D., Ramirez, G.A., Kogut, M.H., Moore, R.W., Corrier, D.E., Deloach, J.R. and Hargis, B.M. (1995a) In ovo administration of Salmonella enteritidis-immune lympho- kines confers protection to neonatal chicks against Salmonella enteritidis organ infectivity. Poultry Science 74: 1825CrossRefGoogle Scholar
McGruder, E.D., Ray, P.M., Tellez, G.I., Kogut, M.H., Corrier, D.E., Deloach, J.R. and Hargis, B.M. (1993) Salmonella enteritidis immune leukocyte-stimulated soluble factors: Effects on increased resistance to Salmonella organ invasion in day-old Leghorn chicks. Poultry Science 72: 22642271CrossRefGoogle ScholarPubMed
Mills, J.N. and Wilcox, G.E. (1993) Separation of phagocytic leukocytes from the peripheral blood of chickens. Avian Pathology 22: 343352CrossRefGoogle ScholarPubMed
Mishima, K., Terashima, M., Obara, S., Yamada, K., Imai, K. and Shimoyama, M. (1991) Arginine-specific ADP-ribosyltransferase and its acceptor protein-P-33 in chicken polymorphonuclear cells. Co-localisation in the cell granules, partial characterization, and in situ mono (ADP-ribosy1)ation. Journal of Biochemistry 110: 388394CrossRefGoogle Scholar
Montali, R.J. (1988) Comparative pathology of inflammation in the higher vertebrates (reptiles, birds and mammals). Journal of Comparative Pathology 99: 126CrossRefGoogle Scholar
Nair, M.K. (1973) The early inflammatory reaction in the fowl – a light microscopical, ultrastructural and autoradiographic study. Acta Veterinaria Scandinavica (Supplement) 42: 1103Google Scholar
Natt, M.P. and Herrick, C.H. (1954) Variations in the shape of the rod-like granule of the chicken heterophil leucocyte and its possible significance. Poultry Scietlce 33: 828830CrossRefGoogle Scholar
Nirmalan, G.P. and Robinson, G.A. (1971) Haematology of the Japanese quail (Coturnix cotnrnix jnponica). British Poultry Science 12: 475481CrossRefGoogle Scholar
Nirmalan, G.P. and Robinson, G.A. (1972) Hematology of Japanese quail treated with exogenous stilbestrol dipropionate and testosterone propionate. Poultry Science 51: 920925CrossRefGoogle ScholarPubMed
Ohno, T., Tsuchiya, M., Osago, H., Hara, N., Jidoi, J. and Shimoyama, M. (1995) Detection of arginine-ADP-ribosylated protein using recombinant ADP-ribosylarginine hydrolase. Anahytic Bioclierrlistry 231: 115122Google ScholarPubMed
Olah, I. and Glick, B. (1984) Meckel's diverticulum. 1. Extramedullary myelopoiesis in the yolk sac of hatched chickens (Gallus domesticirs). The Anatomical Record 208: 243252CrossRefGoogle Scholar
Olson, C. (1937) Variations in the cells and haemoglobin content in the blood of the normal domestic chicken. Cornell Veterinarium 27: 235263Google Scholar
Olson, C. Jr. (1962) Avian hematology. In: Diseases of Poultry, 4th edn (Biester, H.E. and Schwarte, L.H., Eds), Iowa State College Press, Iowa, pp. 5369Google Scholar
Opengart, K., Eyre, P. and Domermuth, C.H. (1992) Increased numbers of duodenal mucosal mast cells in turkeys inoculated with hemorrhagic enteritis virus. American Journal of Veterinary Research 53: 814819CrossRefGoogle ScholarPubMed
Osago, H., Mishima, K., Tsuchiya, M., Tanigawa, T., Umeno, T. and Shimoyama, M. (1991) Localisation of an endogenous ADP-ribose acceptor, P-33, in polymorphonuclear cell granules in chicken liver interlobular connective tissue. Biochemical and Biophysical Research Communications 180: 6468CrossRefGoogle Scholar
Osculati, F. (1970) Fine structural localization of acid phosphatase and arylsulfatase in the chick heterophil leucocytes. Zeitsehrift für Zellforschung and mikroskopische Anatome 109: 398406CrossRefGoogle ScholarPubMed
Penigrahy, B., Rowe, L.D. and Corrier, D.E. (1986) Haematological values and changes in blood chemistry in chickens with infectious bursa1 disease. Research in Veternary Science 40: 8688CrossRefGoogle Scholar
Penniall, R. and Spitznagel, J.K. (1975) Chicken neutrophils: oxidative metabolism in phagocytic cells devoid of myeloperoxidase. Proceedings of the National Acudemy of ScienceUSA50125015CrossRefGoogle Scholar
Ponfick, E. (1872) Ueber die sympatliischen Erkrankungen des Knochenmarkes bei inneren Kraukheiten. Virchows Archiv für Pathologische Anatomie, and Physiologie and für Klinische Medizin 56: 534556Google Scholar
Randall, C.J. and Reece, R.L. (1996) Colour Atlas of Avian Histopathology, Mosby-Wolfe, LondonGoogle Scholar
Rausch, P.G. and Moore, T.G. (1975) Granule enzymes of polymorphonuclear neutrophils: a phylogenetic comparison. Blood 46: 913919CrossRefGoogle ScholarPubMed
Reddy, V.R., Mohiuddin, S.M. and Ramana, P.V. (1981) Effect of different levels of dietary salt on haematology of chicks. lndian Journal Poultry Science 16: 7375Google Scholar
Roberts, E., Severens, J.M. and Card, L.E. (1939) Nature of the hereditary factors for resistance and susceptibility to pullorum disease in the domestic fowl. Seventh World's Congress, Ballimore, Maryland5254Google Scholar
Robertson, G.W. and Maxwell, M.H. (1990) Modified staining techniques for avian blood cells. British Poultry Science 31: 881886CrossRefGoogle ScholarPubMed
Robertson, G.W. and Maxwell, M.H. (1991) Fine structure of secondary granule inclusions in fowl lieterophils after ruthenium tetroxide fixation. Research in Veterinary Science 50: 121122CrossRefGoogle ScholarPubMed
Robertson, G.W. and Maxwell, M.H. (1993) Importance of optimal mixtures of EDTA anticoagulant: blood for the preparation of well-stained avian blood smears. British Poultry Science 34: 615617CrossRefGoogle ScholarPubMed
Rodriguez, A.B., Barriga, C. and Lea, R.W. (1996) Effect of prolactin, in vivo and in vitro, upon heterophil phagocyte function in the ring dove (Streptopelia risorin). Developmental and Comparative Immunology 20: 451457CrossRefGoogle Scholar
Romanoff, A.L. (1960) The Avian Embryo, The Macmillan Co., New YorkGoogle Scholar
Rose, M.E., Hesketh, P. and Ogilvie, B.M. (1979) Peripheral blood leucocyte response to coccidial infection: a comparison of the response in rats and chickens and itscorrelation with resistance to reinfection. Immunology 36: 7179Google Scholar
Rushen, J. (1991) Problems associated with the interpretation of physiological data in the assessment of animal welfare. Applicd Animal Behaviour Science 28: 381386CrossRefGoogle Scholar
Savory, C.J., Seawright, E. and Watson, A. (1992) Stereotype behaviour in broiler breeders in relation to husbandry and opioid-receptor blockade. Applied Animal Behaviour Science 32: 349360CrossRefGoogle Scholar
Shaw, A.F.B. (1933) The leucocytes of the pigcon with special reference to a diurnal rhythm. Journal of Pathology and Bacteriology 37: 411430CrossRefGoogle Scholar
Soliman, M.K., Ahmed, A.A.S., El Amrousi, S. and Moustafa, I.H. (1966) Cytological and biochemical studies on the blood constituents of normal and spirochete-infected chickens. Avian Diseases 10: 394400CrossRefGoogle ScholarPubMed
Sreeraman, P.K., Ahmed, M.N., Rao, P.R. and Sastry, G.A. (1979) Haematology of ducks. Indian Veterinary Journal 56: 100104Google Scholar
Stabler, J.C., McCormick, T.W., Powell, K.C. and Kogut, M.H. (1994) Avian heterophils and monocytes: phagocytic and bactericidal activities against Salmonella enteritidis. veterinary Micrbiology 38: 293305CrossRefGoogle ScholarPubMed
Stockert, J.C., Colman, OD and Cannot, M. (1985) Fluorescence reaction of leukocyte granules by Morn. ACTT. Histochemica S31: 213252Google Scholar
Stockert, J.C., Trigoso, C.I. and Brana, M.F. (1994) A new fluorescence reaction in protein cytochemistry: formation of naphthalimide fluorophores from primary amino groups and 1,8-naphthalic anhydride derivatives. European Journal of Histochemistry 38: 2939Google Scholar
Stoskopf, M.K., Neely, E. and Mangold, B. (1983) Avian hematology in clinical practice. Modern Veterinary Practice 64: 713717Google Scholar
Sugiyama, S. (1926) Origin of thrombocytes and of different types of blood cells as seen in the living chick blastoderm, Carnegie Institute of Washington Publication 363. Contributions to Embryology 18: 123147Google Scholar
Surendranathan, K.P., Nair, S.G. and Simon, K.J. (1968) Haematological constituents of ducks. Indian Veterinary Journal 45: 311318Google Scholar
Taniguchi, M., Tsuchiya, M. and Shimoyama, M. (1993) Comparison of acceptor protein specificities on the formation of ADP-ribose acceptor adducts by arginine-specific ADP-ribosyl-transferase from rabbit skeletal muscle sarcoplasmic-reticulum with those of the enzyme from chicken peripheral polymorphonuclear cells. Biochemica et Biophysica Acta 1161: 265271CrossRefGoogle Scholar
Tangredi, B.P. (1981) Heterophilia and left shift associated with fatal diseases in four psittacine birds: yellow-collared macaw (Ara auricollis), yellow-naped Amazon (Amazona ochrocephala auropalliata), yellow-crowned Amazon (Amazona oclirocephala ochrocephala), blue and gold macaw (Ara araauna). Journal of Zoo Animal Medicine 12: 1316CrossRefGoogle Scholar
Tellez, G.I., Kogut, M.H. and Hargis, B.M. (1993) Immunoprophylaxis of Salmonella enteritidis infection by lymphokines in Leghorn chicks. Avian Diseases 37: 10621070CrossRefGoogle ScholarPubMed
Terashima, M., Mishima, K., Yamada, K., Tsuchiya, M., Wakutani, T. and SHI-Moyama, M. (1992) ADP-ribosylation of actins by arginine-specific ADP ribosyltransferase purified from chicken heterophils. European Journal of Biochemistry 204: 305311CrossRefGoogle ScholarPubMed
Thies, E.S., Nelson, R.D. and Maheswaran, S.K. (1983) Isolation of the turkey heterophil and measurement of its migratory functions under agerose. American Journal of Veterinary Research 44: 288292Google Scholar
Topp, R.C. and Carlson, H.C. (1972) Studies on avian heterophils. II. Histochemistry. Avian Diseases 16: 369373CrossRefGoogle ScholarPubMed
Toth, T.E., Pyle, R.H., Caceci, T., Siegel, P.B. and Ochs, D. (1988) Cellular defense of the avian respiratory system: influx and nonopsonic phagocytosis by respiratory phagocytes activated by Pusteurella multocida. Infection and Immunity 56: 11711179CrossRefGoogle ScholarPubMed
Trout, J.M., Mashaly, M.M. and Siegel, H.S. (1988) Changes in heterophils following antigen injection in immature male chickens. Poultry Science 67: 17751777CrossRefGoogle ScholarPubMed
Trowel, J.E. and Brewer, D.B. (1976) Degranulation of chicken heterophil leucocytes during phagocytosis, studied by phase contrast and interference microscopy. Journal of Patliology 120: 129144Google Scholar
Tsuchiya, M. and Shimoyama, M. (1994). Target protein for eukaryotic arginine-specific ADP-ribosyltransferase. Molecular and Cellular Biochemistry 138: 12CrossRefGoogle ScholarPubMed
Tsuchiya, M., Hara, N., Yamada, K., Osago, H. and Shimoyama, M. (1994) Cloning and expression of cDNA for arginine-specific ADP-ribosyltransferase from chicken bone marrow cells. Journal of Biological Chemistry 269: 2745127457CrossRefGoogle ScholarPubMed
Undritz, E. (1939) Das Pelger-Huëtsche Blutbild beim Tier. Schweizerische medizinische Wochensclirift 69: 11771186Google Scholar
Vanhooser, S.L., Beker, A. and Teeter, R.G. (1995) Bronchodilator, oxygen level, and temperature effects on the ascites incidence in broiler chickens. Poultry Science 74: 15861590CrossRefGoogle ScholarPubMed
Van Niekerk, T., Katanbaf, M.N., Dunnington, E.A. and Siegel, P.B. (1988) Behaviour of early and late feathering broiler breeder hens reared under different feeding regimes. Archiv für Geflügelkunde 52: 230234Google Scholar
Vegad, J.L. and Katiyar, A.K. (1995) The acute inflammatory response in the chicken. Veterinary Bulletin 65: 399409Google Scholar
Venkataratnan, A. and Clarkson, M.J. (1962) The blood cells of the turkey. Research in Veterinary Science 3: 455459CrossRefGoogle Scholar
Wharton-Jones, T. (1846) The blood corpuscle considered in its different phases of development in the animal series. Memoir 1. Vertebrata. Philisophical Transcripts of the Royal Society, London 1: 6387Google Scholar
Wise, P.M. and Frye, B.E. (1973) Functional development of the hypothalamus/adrenal cortex axis in the chick embryo (Gallus domesticus). Journal of Experimental Zoology 185: 277292CrossRefGoogle Scholar
Wood, E.M. (1967) The fine structure of the chick bone marrow, PhD Thesis, University of Harvard, MassachusettsGoogle Scholar
Yamada, J., Yamashita, T. and Misu, M. (1973) Fine structures in the blood cells of Japanese quails (Coturnix coturnix japonica). 1. Heterophils and eosinophils. Research Bulletin Obihiro Zootechnical University 7: 122Google Scholar
Yamada, K., Tsuchiya, M., Mishima, K. and Shimoyama, M. (1992) P-33, an endogenous target protein for arginine-specific ADP-ribosyltransferase in chicken polymorphonuclear leuko- cytes, is highly homologous to MIM-1 protein (MYB-induced myeloid protein-I). FEBS Letters 311: 203205CrossRefGoogle Scholar
Yamada, K., Tsuchiya, M., Nishikori, Y. and Shimoyama, M. (1994)Auto-modification of arginine-specific ADP-ribosyltransferase purified from chicken peripheral heterophils and alteration of the transferase-activity. Archives of Biochemistry and Biophysics 308: 3136CrossRefGoogle Scholar
Zieve, P.D., Haghshenass, M., Blanks, M. and Krevans, J.R. (1966) Vacuolization of the neutrophil: an aid to the diagnosis of septicemia. Archives of Internal Medicine 118: 356357CrossRefGoogle Scholar
Ziprin, R.L. (1997) Heterophil response to intraperitoneal challenge with invasion deficient Salmonella enteritidis and Salmonella-immune lymphokines. Avian Diseases 41: 438441CrossRefGoogle ScholarPubMed
Zulkifli, I and Siegel, P.G. (1994) Heterophil to lymphocyte ratios during perinatal and neonatal stages in chickens. British Poultry Science 35: 309313CrossRefGoogle ScholarPubMed