Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T16:54:04.245Z Has data issue: false hasContentIssue false

Control of food-poisoning salmonella in poultry – biological options

Published online by Cambridge University Press:  18 September 2007

P. A. Barrow*
Affiliation:
Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN
G. C. Mead
Affiliation:
Pine one, Aviary Road, Pyrford, Woking GU22 8TH
C. Wary
Affiliation:
17 Harbutts, Bathampton, Bath BA2 6TA, United Kingdom
M. Duchet-Suchaux
Affiliation:
Institut National de la Recherche Agronomique, Centre de Recherche de Tours, Nouzilly, Monnaie 37380, France
*
*Corresponding author: e-mail: paul.barrow @bbsrc.ac.uk
Get access

Abstract

The high cost of rearing pathogen-free poultry, coupled with increases in importation from non-European countries where hygienic measures may be less stringent indicates that biological approaches to control of infection with food-borne pathogens will continue to be important. The major measures are dealt with in this review, together with the positive and negative aspects of each of these approaches. They include antibiotic therapy and prophylaxis, competitive exclusion using intestinal flora preparations, live and killed vaccines and the increasing interest in exploiting natural genetic resistance to infection and disease.

Type
Reviews
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon (1969) Report of the Joint Committee on the use of antibiotics in animal husbandry and veterinary medicine. Cmnd 4190. HMSO, London.Google Scholar
Barrow, P.A., Lovell, M.A., Szmolleny, G. and Murphy, C.K. (1998) Effect of enrofloxacin administration on excretion of Salmonella enteritidis by experimentally infected chickens and on quinolone resistance of their Escherichia coli flora. Avian Pathology 27: 586590.CrossRefGoogle Scholar
Barrow, P.A., Page, K. and Lovell, M.A. (2001) The virulence for gnotobiotic pigs of live attenuated vaccine strains of Salmonella enterica serovar Typhimurium and Enteritidis. Vaccine 19: 34323436.CrossRefGoogle ScholarPubMed
Bercheri, A. Jr (1999) Intestinal colonization of a human subject by vancomycin-resistant Enterococcus faecium. Clinical Microbiology and Infection 5: 97100.CrossRefGoogle Scholar
Berthelot, F., Beaumony, C., Mompart, F., Girard-Santosuosso, O., Pardon, P. and Duchet-Suchaux, M. (1998) Estimated heritability of the resistance to cecal carrier state of Salmonella enteritidis in chickens. Poultry Science 77: 797801.CrossRefGoogle ScholarPubMed
Bumstead, N. and Barrow, P.A. (1988) Genetics of resistance to Salmonella typhimurium in newly hatched chicks. British Poultry Science 29: 521529.CrossRefGoogle ScholarPubMed
Bumstead, N. and Barrow, P. (1993) Resistance to Salmonella gallinarum. S. Pullorum and S. enteritidis in inbred lines of chickens. Avian Diseases 37: 189193.CrossRefGoogle ScholarPubMed
Cooper, G.L., Venables, L.M., Woodward, M.J. and Hormaeche, C.E. (1994) Vaccination of chickens with strain CVL30, a genetically defined Salmonella enteritidis aroA live oral vaccine candidate. Infection and Immunity 62: 4747–54.CrossRefGoogle ScholarPubMed
Cotter, P.F., Taylor, R.L. Jr and Abplanalp, H. (1998) B-complex associated immunity to Salmonella enreritidis challenge in congenic chickens. Poultry Science 77: 18461851.CrossRefGoogle ScholarPubMed
Curtiss, R., Porter, S.B., Munson, M., Tinge, S.A., Hassan, J.O., Gentry-Weeks, C. and Kelly, S.M. (1991) Non-recombinant and recombinant avirulent Salmonella live vaccines for poultry. In: Colonization control of human hacterial enteropnrhogens in Poultry. Ed. Leroy, S. Blankenship. Academic Press, San Diego.pp 169198.CrossRefGoogle Scholar
Deruyttere, L., Klaasen, J., Froyman, R. and Day, C.A. (1997) Field study to demonstrate the efficacy of Aviguard against intestinal Salmonella colonization in broilers. In: Proceedings. Salmonella and Salmonellosis, Ploufragan, France, pp 523525.Google Scholar
Duchet-Suchaux, M., Mompart, F., Berthelot, F., Beaumont, C., Lechopier, P. and Pardon, P. (1997) Differences in frequency, level, and duration of cecal carriage between four outbred chicken lines infected orally with Salmonella enteritidis. Avian Diseases 41: 559567.CrossRefGoogle ScholarPubMed
Elwinger, K., Schneitz, C., Berndtson, E., Fossum, O., Teglof, B. and Engstron, B. (1992) Factors affecting the incidence of necrotic enteritis, caecal carriage of Clostridium perfringens and bird performance in broiler chicks. Acta Veterinaria Scandinavica 33: 369378.CrossRefGoogle ScholarPubMed
Feberwee, A., De Vries, T.S., Elbers, A.R. and De Jong, W.A. (2000) Results of a Salmonella enteritidis vaccination field trial in broiler-breeder flocks in The Netherlands. Avian Diseases 44: 249–55.CrossRefGoogle ScholarPubMed
Feberwee, A., De Vries, T.S., Hartman, E.G., De Wit, J.J., Elbers, A.R. and De Jong, W.A. (2001) Vaccination against Salmonella enteritidis in Dutch commercial layer flocks with a vaccine based on a live Salmonella gallinarum 9R strain: evaluation of efficacy, safety, and performance of serologic Salmonelia tests. Avian Diseases 45: 8391.CrossRefGoogle Scholar
Gast, R.K. and Benson, S.T. (1995) The comparative virulence for chicks of Salmonella enteritidis phage type 4 isolates and isolates of phage types commonly found in poultry in the United States. Avian Diseases 39: 567574.CrossRefGoogle ScholarPubMed
Guillot, J.F., Beaumont, C., Bellatif, F., Mouline, C., Lantier, F., Colin, P. and Protais, J. (1995) Comparison of resistance of various poultry lines to infection by Salmonalla enteritidis. Veterinary Research 26: 8186.Google Scholar
Hakkinen, M. and Schneitz, C. (1996) Efficacy of a commercial competitive exclusion product against chicken pathogenic Escherichia coli and E. coli 0157:H7. Veterinay Record 139: 139141.CrossRefGoogle Scholar
Hassan, J.O. and Curtiss, R. III (1996). Effect of vaccination of hens with an avirulent strain of Salmonella typhirnurium on immunity of progeny challenged with wild-Type Salmonella strains. Infection and Imnmnity 64: 938944.CrossRefGoogle ScholarPubMed
Hu, J., Bumstead, N., Barrow, P., Sebastiani, G., Olien, L., Morgan, K. and Malo, D. (1997) Resistance to salmonellosis in the chicken is linked to NRAMPL and TNC. Genome Research 7: 693704.CrossRefGoogle ScholarPubMed
Impey, C.S. and Mead, G.C. (1989) Fate of salmonellas in the alimentary tract of chicks pretreated with a mature caecal microflora to increase colonization resistance. Journal of Applied Bacteriology 66: 469475.CrossRefGoogle ScholarPubMed
Impey, C.S., Mead, G.C. and George, S.M. (1982) Competitive exclusion of salmonellae from the chick caecum using a defined mixture of bacterial isolates from the caecal microflora of an adult bird. J. Hygiene 89: 479490.CrossRefGoogle ScholarPubMed
Janss, L.L. and Bllder, N.M. (2000) Heritabilities of and genetic relationships between salmonella resistance traits in broilers. Journal of Animal Science 78: 22872291.CrossRefGoogle ScholarPubMed
Kramer, J., Jeurissen, S.H.M., Wagenaar, J.A. and Visscher, A.H. (1999) Differences in macrophages functions between broiler chicken lines against Salmonella enteritidis. Archiv für Tierzucht. Dunmerstorf 42: 112115.Google Scholar
Mariani, P., Barrow, P.A., Cheng, H.H., Groenen, M.M., Negrini, R. and Bumstead, N. (2001) Localization to chicken Chromosome 5 of a novel locus determining salmonellosis resistance. Immunogenetics 53: 786–91.CrossRefGoogle ScholarPubMed
Martin, G., Barrow, P.A., Berchieri, A. Jr, Methner, U. and Meyer, H. (1996) Hemmphänomene zwischen Salmonella-Stämmen- ein ncuer Aspekt der Bekämpfung der Salmonellose beim Geflügel. Deutscher Tierärztlicher Wochenschrift 103: 468472.Google Scholar
Mead, G.C. (1989) Hygiene problems and control of process contamination. In: Mead, G. C. (Ed) Processing of poultry. Elsevier, London. pp. 183220.Google ScholarPubMed
Mead, G.C. (2000) Prospects for ‘competitive exclusion’ treatment to control salmonellas and other food-borne pathogens in poultry. Veterinary Journal 159: 111–23.CrossRefGoogle Scholar
Noble, W.C., Virani, Z. and Crec, R.G.A. (1992) Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 93: 195198.CrossRefGoogle Scholar
Nurmi, E. and Rantala, M. (1973) New aspects of Salmonella infection in broiler production. Nature 241: 210–1.CrossRefGoogle ScholarPubMed
O'Brien, A.D., Rosentreich, D.L., Scher, I., Campbell, G.H., Macdermott, R.P. and Formal, S.B. (1980) Genetic control of susceptibility to Salmonella typhimurium infection in mice: Role of the LPS gene. Journal of Immunology 124: 2024.CrossRefGoogle ScholarPubMed
Palmu, L. and Camelin, I. (1997) The use of competitive exclusion in broilers to reduce the level of Salmonella contamination on the farm and at the processing plant. Poult. Sci. 76: 15011505.CrossRefGoogle ScholarPubMed
Barbour, E.K., Jurdi, L.H., Talhouk, R., Qatanani, M., Eid, A., Sakr, W., Bouljihad, M. and Spasojevic, R. (1999) Emergence of Salmonella enteritidis outbreaks in broiler chickens in the Lebanon: epidemiological markers and competitive exclusion control. Rev. Sci. Tech. 18: 710718.CrossRefGoogle ScholarPubMed
Piddock, L.V.J., Wray, C., Mclaren, I. and Wise, R. (1990) Quinolone resistance in Salmonella: veterinary pointers. Lancet 336: 125.CrossRefGoogle ScholarPubMed
Pivnick, H. and NurmiI, E. (1982) The Nurmi Concept and its role in the control of salmonellae in poultry. In: Developments in Food Microbiology —I (Davies, R, Ed.) Applied Science Publishers, London pp 4170.Google Scholar
Rabsch, W., Hargis, B.M., Tsolis, R.M., Kingsley, R.A., Hinz, K.H., Tschape, H. and Baumler, A.J. (2000) Competitive exclusion of Salmonella enteritidis by Salmonella gallinarum in poultry. Emerging Infect Dis 6: 443–8.CrossRefGoogle ScholarPubMed
Schneitz, C. (1992) Research note: automated droplet application of a competitive exclusion preparation. Poultry Science 71: 2125–8.CrossRefGoogle ScholarPubMed
Smith, H.W., Barrow, P.A. and Tucker, J.F. (1985). The effect of oral antibiotic administration on the excretion of Salmonellas by chickens. Proceedings of the International Symposium on Salmonella, New Orleans, Louisiana, USA. 07, 19–20. pp. 8890.Google Scholar
Smith, H.W. and Tucker, J.F. (1975) The effect of antibiotic therapy on the faecal excretion of Salmonella typhimurium by experimentally infected chickens. Journal of Hygiene, Cambridge 75: 293301.CrossRefGoogle Scholar
Smith, H.W. and Tucker, J.F. (1980) Further observations on the effect of feeding diets containing avoparcin, bacitracin and sodium arsenilate on the colonisation of the alimentary tract of poultry by Salmonella organisms. Journal of Hygiene, Camb. 84: 137150.CrossRefGoogle ScholarPubMed
Snoeyenbos, G.H., Weinack, O.M. and Soerjadi, A.S. (1983) Our current understanding of the role of native microflora in limiting some bacterial pathogens of chickens and turkeys. Australian Veterinary Poultry Association and International Union of Immunological Societies, Proceedings No 66: Disease Prevention and Control in Poultry Production, Sydney, Australia, pp 4551.Google Scholar
Stavric, S., Buchanan, B. and Gleeson, T.M. (1992) Competitive exclusion of Escherichia coli 0157: H7 from chicks with anaerobic culture of faecal microflora. Letters in Applied Microbiology 14: 191193.CrossRefGoogle Scholar
Stavric, S. and D'aoust, J-Y. (1993) Undefined and defined bacterial preparations for the competitive exclusion of Salmonella in poultry – a review. Journal of Food Protection 56: 173180CrossRefGoogle ScholarPubMed
Symposium (1991) Proceedings of the Symposium on the diagnosis and control of Salmonella, San Diego,USA. United States Animal Health Association.Google Scholar
Vidal, S.M., Malo, D., Vogan, K., Skamene, E. and Gros, P. (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate gene for Bcg. Cell 73: 469485.CrossRefGoogle ScholarPubMed
Vielitz, E., Voss, M. and Hahn, I. (1996) Vaccines help to control salmonella problems. World Poultry: Salmonella, 05 pp 2638.Google Scholar
Wegener, H.C., Aarestrup, F.M., Jensen, L.B., Hammerum, A.M. and Bager, F. (1999) Use of antimicrobial growth promoters in food animals and Enterococcus, faecium resistance to therapeutic antimicrobials in Europe. Emerging Infection Diseases 5: 329335.CrossRefGoogle ScholarPubMed
Weinack, O.M., Snoeyyenbos, G.H., Smyser, C.F. and Soerjadi, A. S. (1981) Competitive exclusion of intestinal colonization of Escherichia coli in chicks. Avian Diseases, 25: 696705.CrossRefGoogle ScholarPubMed
Wierup, M., Wahlstrom, H. and Engstrom, B. (1992) Experience of a 10-year use of competitive exclusion treatment as part of the Salmonella control programme in Sweden. International Journal of Food Microbiology 15, 287–91.CrossRefGoogle ScholarPubMed
Wigley, P., Hulme, S.D., Bumstead, N. and Barrow, P.A. (2002) In vivo and in vitro studies of genetic resistance to systemic salmonellosis in the chicken encoded by the SALI locus. Microbes and Infection 4: 11111120.CrossRefGoogle Scholar
Witvliet, M., Vorstemans, T., Scharr, H., Van Empel, P. and Van Den Bosch, H. (1997). The Salmonella gallinarum 9R vaccine: homologous protection and cross protection against Salmonella enteritidis. Proceedings of the second International symposium on Salmonella and salmonellosis. Ploufragan, France. 503505.Google Scholar
World Health Organisation (1980) Unpublished report of the WHO/:WAVFH Round Table Conference on the present status of the Salmonella problem (prevention and control). WHO/VPH/81.27 (Geneva, WHO).Google Scholar
World Health Organisation (1990) Unpublished report of WHO Consultation on Salmonellosis Control in Agriculture. WHO/CDS/VPH/90.94 (Geneva, WHO).Google Scholar
Wray, C., Mclaren, I., Wise, R. and Piddiock, L.J.V. (1990) Nalidixic acid resistant salmonellae. Veterinary Record 126: 489.Google ScholarPubMed