Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T00:44:35.886Z Has data issue: false hasContentIssue false

Essentiality of Vitamin D3 and its Metabolites in Poultry Nutrition: A Review

Published online by Cambridge University Press:  18 September 2007

S. Ameenuddin
Affiliation:
Department of Poultry Science University of Wisconsin, 1675 Observatory Drive, Madison, Wisconsin 53706
M. L. Sunde
Affiliation:
Department of Poultry Science University of Wisconsin, 1675 Observatory Drive, Madison, Wisconsin 53706
M. E. Cook
Affiliation:
Department of Poultry Science University of Wisconsin, 1675 Observatory Drive, Madison, Wisconsin 53706
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, E., Horikawa, H., Musumura, T., Sugahara, M., Kubota, M. and Suda, T. (1982). Disorder of cholecalciferol metabolism in old egg-laying hens. Journal of Nutrition 112: 436446.CrossRefGoogle ScholarPubMed
Abe, E., Ranabe, R., Yoshiki, S., Horikawa, H., Masumura, T. and Sugahara, M. (1979). Circadian rhythm of 1,25-dihydroxyvitamin D3 production in egg laying hens. Biochemical, Biophysical Research Communcations 88: 500507.CrossRefGoogle Scholar
Ameenuddin, S., Sadagopan, V. R. and Rao, P. V. (1976). Effect of varying levels of protein and calcium on the performance of Rhode Island Red caged layers. Indian Veterinary Journal 53: 609615.Google Scholar
Ameenuddin, S., Sunde, M. L., DeLuca, H. F., Ikekawa, N. and Kobayashi, Y. (1982). 24-hydroxylation of 25-hydroxy-vitamin D3: Is it required for embryonic development in chicks? Science 217: 451452.CrossRefGoogle Scholar
Ameenuddin, S., Sunde, M. L., DeLuca, H. F.Ikekawa, N. and Kobayashi, Y. (1983). Support of embryonic chick survival by vitamin D metabolites. Archives Biochemistry and Biophysics 226: 666670.CrossRefGoogle ScholarPubMed
Antoniou, T., Marquardt, R. R. and Misir, R. (1980). The utilization of rye by growing chicks as influenced by calcium, vitamin D3, and fat type and level. Poultry Science 58: 758769.CrossRefGoogle Scholar
Bar, A. and Hurwitz, S. (1973). Uterine calcium binding protein in the laying fowl. Comparative Biochemistry and Physiology 45A: 579586.CrossRefGoogle Scholar
Bar, A. and Hurwitz, S. (1975). Intestinal and uterine calcium-binding protein in laying hens during different stages of egg formation. Poultry Science 54: 13251327.CrossRefGoogle ScholarPubMed
Bar, A., Hurwitz, S. and Cohen, I. (1972). Relationship between duodenal calcium-binding protein, parathyroid activity and various parameters of mineral metabolism in the rachitic and vitamin D-treated chicks. Comparative Biochemistry and Physiology 43A: 519526.CrossRefGoogle Scholar
Bar, A., Sharvit, M., Noff, D., Edelstein, S. and Hurwitz, S. (1980). Absorption and excretion of cholecalciferol and of 25-hydroxycholecalciferol and metabolites in birds. Journal of Nutrition 110: 19301934.CrossRefGoogle ScholarPubMed
Battacharyya, M. H. and DeLuca, H. F. (1974). Subcellular location of rat liver cholecalciferol 25-hydroxylase. Archives of Biochemistry and Biophysics. 160: 5862.CrossRefGoogle Scholar
Becker, W. S. and Hoekstra, W. G. (1966). Effect of vitamin D on Zn-65 absorption, distribution and turnover in rats. Journal of Nutrition 90: 301309.CrossRefGoogle Scholar
Belanger, L. F. and Migicovsky, B. B. (1958). Early changes at the epiphysis of rachitic chicks following administration of vitamin D3. Journal of Experimental Medicine 107: 821828.CrossRefGoogle Scholar
Bell, O. J. and Freeman, B. M. (1971). Physiology and Biochemistry of the domestic fowl. Bell, O. J. and Freeman, B. M., (eds.) vol. 3; London Academic Press.Google Scholar
Bethke, R. M., Record, P. R. and Kennard, D. C. (1933). The comparative antirachitic efficiency of irradiated ergosterol, irradiated yeast, and cod liver oil for the chicken. Journal of Nutrition 6: 413425.CrossRefGoogle Scholar
Blunt, J. W. and DeLuca, H. F. (1969). The synthesis of 25-hydroxy-cholecalciferol a biologically active metabolite of vitamin D3. Biochemistry 8: 671675.CrossRefGoogle Scholar
Blunt, J. W., DeLuca, H. F. and Schones, H. K. (1968). 25-hydroxy-cholecalciferol a biologically active metabolite of vitamin D3. Biochemistry 7: 33173322.CrossRefGoogle Scholar
Botham, K. M., Ghazarian, J. G., Kream, B. E. and DeLuca, H. F. (1976). Isolation of an inhibitor of 25-hydroxyvitamin D3−1-hydroxylase from rat serum. Biochemistry 15: 21302135.CrossRefGoogle ScholarPubMed
Boyle, I. T., Gray, R. W. and Deluca, H. F. (1971). Regulation by calcium in vivo synthesis of 1,25-dihydroxycholecalciferol and 21,25-dihydroxycholecalciferol. Proceedings National Academy of Science U.S.A. 68: 21312134.CrossRefGoogle ScholarPubMed
Boyle, I. T., Miravet, L., Gray, R. W., Holick, M. F. and DeLuca, , (1972). The response of intestinal calcium transport to 25-hydroxy and 1,25-hydroxyvitamin D in nephrectomized rats. Endocrinology 90: 605608.CrossRefGoogle Scholar
Boyle, I. T., Omdahl, J. L., Gray, R. W. and DeLuca, H. F. (1973). The biological activity and metabolism of 24,25-dihydroxy-vitamin D3. Journal of Biological Chemistry 248: 41744180.CrossRefGoogle Scholar
Britten, W. M. and Wyatt, R. D. (1978). Effect of dietary aflatoxin on vitamin D3 metabolism in chicks. Poultry Science 57: 163165.CrossRefGoogle Scholar
Cantor, A. H. and Bacon, W. L. (1978). Performance of caged-broilers fed vitamin D3 and 25-OH-D3. Poultry Science 57: 11231124.Google Scholar
Carradino, R. A., Wasserman, R. H., Pubols, M. H. and Chang, S. I. (1968). Vitamin D3 induction of a calcium-binding protein in the uterus of the laying fowl. Archives of Biochemistry and Biophysics 125: 378380.CrossRefGoogle Scholar
Castillo, L., Tanaka, Y., DeLuca, H. F. and Ikekawa, . (1978). On the physiological role of 1,24,25-trihydroxyvitamin D3. Mineral and Electrolyte Metabolism 1: 198207.Google Scholar
Castillo, L., Tanaka, Y., DeLuca, H. F. and Sunde, M. L. (1977). The situation of 25-hydroxyvitamin D3-1-hydroxylase by estrogen. Archives of Biochemistry and Biophysics 179: 211217.CrossRefGoogle Scholar
Castillo, L., Tanaka, Y., Wineland, M. J., Jowsey, J. O. and DeLuca, H. F. (1979). Production of 1,25-dihydroxyvitamin D3 and formation of medullary bone in the egg laying hen. Endocrinology. 104: 1581601.CrossRefGoogle ScholarPubMed
Charles, O. W. and Ernst, R. A. (1974). Effect of age, calcium level and vitamin D metabolites on egg shell quality of SCWL. Poultry Science 53: 1908.Google Scholar
Chen, P. A. and Bosmann, H. B. (1964). Effect of vitamin D2 and D3 on serum calcium and phosphorus in rachitic chicks. Journal of Nutrition 83: 133139.CrossRefGoogle ScholarPubMed
Chen, T. C., Castillo, L.Korycka-Dhal, M. and DeLuca, H. F. (1974). Role of vitamin D metabolites in phosphate transport of rats intestine. Journal of Nutrition 104: 10561060.CrossRefGoogle Scholar
Christakos, S., Friedlander, E. J., Frandsen, B. R. and Norman, A. W. (1979). Studies on the mode of action of calciferol. XIII. Development of a radio-immunoassay for vitamin D-dependent chick intestinal calcium-binding protein and tissue distribution. Endocrinology 104: 14951503.CrossRefGoogle Scholar
Clandlish, J. K. (1971). The formation of mineral and organic matrix of fowl cortical and medullary bone during shell calcification. British Poultry Science 12: 119127.CrossRefGoogle Scholar
Coates, M. E. and Holdsworth, E. S. (1961). Vitamin D3 and absorption of calcium in the chicks. British Journal of Nutrition 15: 131147.CrossRefGoogle Scholar
Coty, A. (1980). A specific high affinity binding protein for 1,25-dihydroxyvitamin D in the chick oviduct shell gland. Biochemical, Biophysical Research, Communications 93: 285292.CrossRefGoogle Scholar
Couch, J. R., James, L. E. and Sherwood, R. M. (1947). The effect of different levels of manganese and different amounts of vitamin D in the diets of hens and pullets. Poultry Science 26: 3037.CrossRefGoogle Scholar
Cox, J. (1967). How much is egg breakage costing you? Poultry Tribune 10: 46.Google Scholar
DeLuca, H. F. (1972). Metabolites of vitamin D. New tools of medicine and nutrition. Proceedings Cornell Nutrition Conference 33 22112219.Google Scholar
DeLuca, H. F. (1974). Vitamin D. The vitamin and the hormone. Federation Proceedings 33: 22112219.Google ScholarPubMed
DeLuca, H. F. (1978). Vitamin D in The Fat Soluble Vitamins. DeLuca, H. F. (Ed.) Plenum press, New York, pages 69132.CrossRefGoogle Scholar
DeLuca, H. F. (1979). The vitamin D system in the regulation of calcium and phosphorus metabolism. Nutrition reviews 37: 161193.CrossRefGoogle ScholarPubMed
DeLuca, H. F. (1979a). Vitamin D. Metabolism and Function. In Monographs on Endocrinology vol. 13. Gross, F., Grumbach, M. M., Labhart, A., Lipsett, M. B., Mann, J., Samuels, L. T., Zander, J. (Eds.). Springer-Verlag, New York.Google Scholar
DeLuca, H. F. (1981). Recent advances in the metabolism of vitamin D. Annual Review of Physiology 43: 199230.CrossRefGoogle Scholar
DeLuca, H. F. and Schones, H. K. (1976). Metabolism and mechanism of action of vitamin D. Annual Review of Biochemistry 45: 631666.CrossRefGoogle ScholarPubMed
Ehrenspeck, G., Schraer, H. and Schraer, R. (1971). Calcium transfer across isolated avian shell gland. American Journal of Physiology 220: 967972.CrossRefGoogle ScholarPubMed
Eisman, J. A., Shepard, R. M. and DeLuca, H. F. (1977). Determination of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 in human plasma using high-pressure liquid chromatography. Analytical Biochemistry 80: 298305.CrossRefGoogle ScholarPubMed
Esvelt, R. P., Schones, H. K. and DeLuca, H. F. (1978). Vitamin D3 from rat skins irradiated in vitro with ultra-violet light. Biochimica er Biophysica Acta 188: 282286.Google Scholar
Esvelt, R. P., Schones, H. K. and DeLuca, H. F. (1979). Isolation and characterization of 1-hydroxy-23-carboxytetra-nor-vitamin D: major metabolite of 1,25-hydroxyvitamin D3. Biochemistry. 18: 39773983.CrossRefGoogle Scholar
Frank, F. R. (1977). Potential uses of the vitamin D3 metabolite, 25-hydroxyvitamin D3 in the animal industry. Proceedings Distribution Feed Research Council 32: 1422.Google Scholar
Fritz, J. C., Roberts, T., Boehne, J. W. and Hove, E. L. (1968). Factors affecting the chick's requirement for phosphorus. Poultry Science 47: 307320.Google Scholar
Fuller, C. S., Brindak, M. E., Bar, A. and Wasserman, R. H. (1976). The purification of calcium binding protein from the uterus of the laying hen. Proceedings Society Experimental Biology and Medicine 152: 237241.CrossRefGoogle Scholar
Garlich, J. and Wyatt, R. D. (1971). Effect of increased vitamin D3 on calcium retention and egg shell calcification. Poultry Science 50: 950956.CrossRefGoogle ScholarPubMed
Goodwin, D., Noff, D. and Edelstein, S. (1978). 24,25-dihydroxy vitamin D is a metabolite of vitamin D essential for bone formation. Nature 276: 517519.Google Scholar
Gude, Z. Zh., Bagan, O. P. and Vrublevs'Kii, A. K. (1964). Influence of large doses of vitamin A, D, and B1 on the content of copper in the animal. Ukrainskii Biokhimicheskii Zhurnal 36: 89897.Google Scholar
Haddad, J. G. and Walgate, J. (1976). 25-hydroxyvitamin D transport in human plasma. Journal of Biological Chemistry 251: 48034809.CrossRefGoogle ScholarPubMed
Halloran, B. P., DeLuca, H. F., Barthell, E. N., Yamda, S., Ohmori, M. and Takayama, H. (1981). An examination of the importance of 24-hydroxylation on the function of vitamin D during early development. Endocrinology. 108: 20672071.CrossRefGoogle ScholarPubMed
Hamilton, R. M. G. (1980). The effects of dietary phosphorus, vitamin D3 and 25-hydroxyvitamin D3 levels on feed intake, productive performance and egg shell quality in two strains of forced-moulted White Leghorns. Poultry Science 59: 598604.CrossRefGoogle Scholar
Henry, H. L. and Norman, A. W. (1978). Vitamin D: Two hydroxylated metabolites are required for normal chicken egg hatchability. Science 201: 835837.CrossRefGoogle Scholar
Henry, H. L., Taylor, A. N. and Norman, A. W. (1977). Response of chick parathyroid glands to the vitamin D metabolites, 1,25-dihydroxycalciferoll and 24,25-dihydroxycholecalciferoi. Journal of Nutrition. 107: 19191926.CrossRefGoogle Scholar
Hess, A. F., Weinstock, M. and Helman, F. B. (1925). The antirachitie value of irradiated phytosterol and cholesterol. Journal of Biological Chemistry 6: 305308.CrossRefGoogle Scholar
Holick, M. F., Bacter, L. A., Schraufrogel, P. K., Tavela, T. E. and DeLuca, H. F. (1976). Metabolism and biological activity of 24,25-dihydroxyvitamin D3 in the chick. Journal of Biological Chemistry 251: 397402.CrossRefGoogle Scholar
Holick, M. F., Garabedian, M. and DeLuca, H. F. (1972). 1,25-dihydroxychole calciferol: Metabolite vitamin D3 active on bone in anephric rats. Science 176: 11461147.CrossRefGoogle Scholar
Holick, M. F., Schones, H. K., DeLuca, H. F., Gray, R. W., Boyle, I. T. and Suda, T. (1972a). Isolation and identification of 24,25-dihydroxycholecalciferol, a metabolite of vitamin D3 made in the kidney. Biochemistry 11: 42514255.CrossRefGoogle ScholarPubMed
Holick, M. F., Schones, H. K., DeLuca, H. F., Suda, T. and Cousins, R. J. (1971). Isoation and identification of 1,25-dihydroxycholecalciferol. A metabolite of vitamin D active in intestine. Biochemistry 10: 27992804.Google Scholar
Horwitz, S., Harrison, H. C. and Harrison, H. E. (1967). Effect of vitamin D3 on the in vitro transport of calcium by the chick intestine. Journal of Nutrition 91: 319323.CrossRefGoogle Scholar
Itakura, C., Yamasaki, K. and Goto, M. (1978). Pathology of experimental vitamin D deficiency rickets in growing chickens. II. Parathyroid gland. Avian Pathology 7: 515532.CrossRefGoogle ScholarPubMed
Itakura, C., Yamasaki, K.Goto, M. and Takahashi, M. (1978a). Pathology of experimental vitamin D deficiency rickets in growing chickens. 1. Bone. Avian Pathology 7: 491513.CrossRefGoogle Scholar
Jones, G., Schones, H. K. and DeLuca, H. F. (1975). Isolation and identification of 1,25-dihydroxyvitamin D3. Biochemistry 14: 12501256.CrossRefGoogle Scholar
Jones, G., Schones, H. K. and DeLuca, H. F. (1976). An in vitro study of vitamin D3 hydroxylases in the chick. Journal of Biological Chemistry 251: 2428.CrossRefGoogle Scholar
Kenny, D., (1976). Vitamin D metabolism: Physiological regulation in egg-laying Japanese quail. American Journal of Physiology 230: 16091615.CrossRefGoogle ScholarPubMed
Kleiner-Bossalar, A. and DeLuca, H. F. (1974). Formation of 1,24,25-trihydroxyvitamin D3 from 1,25-dihydroxyvitamin D3. Biochimica et Biophysica Acta 338: 489495.CrossRefGoogle Scholar
Knutson, J. C. and DeLuca, H. F. (1974). 25-hydroxyvitamin D3-24-hydroxylase. Subcellular location and properties. Biochemistry 13: 15431548.CrossRefGoogle ScholarPubMed
Kobayashi, Y., Taguchi, T., Trerada, T., Oshida, J., Morisaki, M. and Ikekawa, N. (1979). Synthesis of 24,24-difluoro-and 24S-Fluoro-25-hydroxyvitamin D3. Tetrahedron Letters 22: 20232024.CrossRefGoogle Scholar
Kumar, R., Schones, H. K. and DeLuca, H. F. (1978). Rat intestinal 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3-24-hydroxylase. Journal of Biological Chemistry 253: 38043809.CrossRefGoogle Scholar
Lawson, D. E. M. (1980). Metabolism of vitamin D. In Vitamin D. Molecular Biology and Clinical Nutrition. Norman, A. W. (Ed.). Marcel Dekker, Inc., New York, pp. 93126.Google Scholar
Lippiello, L. and Wasserman, R. H. (1975). Fluorescent antibody localization of the vitamin D-dependent calcium binding protein in the oviduct of the laying hen. Journal of Histochemistry and Cytochemistry 23: 111116.CrossRefGoogle ScholarPubMed
Llach, F., Brickman, A. S., Singer, F. R. and Coburn, J. W. (1979). 24,25-dihydroxycholecalciferol, a vitamin D sterol with qualitatively unique effects in uremic man. Metabolic Bone Disease and Related Research 2: 1116.CrossRefGoogle Scholar
Lund, M. and DeLuca, H. F. (1966). Biological active metabolite of vitamin D3 from bone, liver and blood serum. Journal of Lipid Research 7: 739744.CrossRefGoogle ScholarPubMed
Mac'Auliffe, T.Pietraszek, A. and McGinnis, J. (1976). Variable rachitogenic effects of grain and alleviation by extraction or supplementation with vitamin D, fat and antibiotics. Poultry Science 55: 21422147.CrossRefGoogle ScholarPubMed
MacAuliffe, T., Pietraszek, A. and McGinnis, J. (1976a). The effect of grain component on the response of turkey poults to vitamin D3 and penicillin. Poultry Science 55: 183187.CrossRefGoogle Scholar
Manley, J. M., Voitle, R. A. and Harms, R. H. (1978). The influence of hatchability of turkey, eggs from the addition of 25-OH-D3 to the diet. Poultry Science 57: 290292.CrossRefGoogle Scholar
Marquardt, R. R., Ward, A. T. and Misir, R. (1979). The retention of nutrients by chicks fed rye diets supplemented with amino acids and penicillin. Poultry Science 358: 631640.CrossRefGoogle Scholar
Marrett, L. E., Frank, F. R. and Zimbelman, R. G. (1975). 25-hydroxy cholecalciferol as a dietary replacement of D3 to improve egg-shell calcification. Poultry Science 54: 1788.Google Scholar
McCollum, E. V. (1925). Studies on experimental rickets. Journal of Biological Chemistry 65: 97100.CrossRefGoogle Scholar
McLaughlin, D. P. and Soares, J. H. Jr. (1976). A study of the effects of 25-hydroxycholecalciferol and calcium source on egg shell quality. Poultry Science 55: 14001410.CrossRefGoogle Scholar
McNaughton, J. L., Day, E. L. and Dilworth, B. C. (1977). The chick's requirement for 25-hydroxycholecalciferol and cholesterol. Poultry Science 56: 511516.CrossRefGoogle Scholar
Mellanby, E., (1919). An experimental investigation on rickets. Lancet 1: 407412.Google Scholar
Miller, P. C. and Sunde, M. L. (1975). Dietary calcium levels in pre-lay and lay diets in Leghorn pullets. Poultry Science 54: 18561867.CrossRefGoogle ScholarPubMed
Morrissey, R. L., Cohn, R. M., Empson, R. N. Jr., Greene, H. L., Taunton, O. D. and Ziporin, Z. Z. (1977). Relative toxicity and metabolic effects of cholecalciferol and 25-hydroxycholecalciferol in chicks. Journal of Nutrition 107: 10271034.CrossRefGoogle ScholarPubMed
Motzok, I. (1965). Factors affecting the utilization of calcium and phosphorus from soft phosphate by chicks. Poultry Science 44: 12611270.CrossRefGoogle ScholarPubMed
Mraz, F. R. (1961). Influence of dietary calcium, phosphorus and vitamin D4 on 45Ca 85Sr uptake by chicks. Journal of Nutrition 73: 409414.CrossRefGoogle Scholar
Musser, M. A., Cantor, A. H. and Bacon, W. L. (1977). Intestinal calcium binding protein levels in the one month old poult. Poultry Science 56: 14401442.CrossRefGoogle ScholarPubMed
Nairn, M. E. and Watson, A. R. A. (1972). Leg weakness of poultry. A clinical and pathological characterization. Australian Veterinary Journal 48: 645656.CrossRefGoogle Scholar
National Research Council, (1977). Nutrient requirements of domestic animals. 1. Nutrient requirements of poultry., National Academy of Science, Washington D.C.Google Scholar
Nelson, T. S. (1967). The utilization of phytate phosphorus by poultry. A review. Poultry Science 46: 862871.CrossRefGoogle ScholarPubMed
Norman, A. W. and Henry, H. L. (1979). Vitamin D to 1,25-dihydroxycholecalciferol: Evolution of a steroid hormone. Trends, in Biochemical Sciences 4: 1418.CrossRefGoogle Scholar
Norman, A. W., Henry, H. L. and Malluche, H. H. (1980). 24R,25-dihydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 are both indispensible for calcium and phosphorus homeostasis. Life Science 27: 229237.CrossRefGoogle Scholar
Norman, A. W., Taylor, A. N., Hartenbower, D. L. and Cuburn, J. L. (1976). Biological activity of 24,25-dihydroxycholecal-ciferol in chicks and rats. Journal of Nutrition 106: 724734.Google Scholar
Ohnuma, N., Banni, K., Yamaguchi, H., Hishimato, Y. and Norman, A. W. (1980). Isolation of a new metabolite of vitamin D produced in vivo, 1,25-dihydroxyvitamin D3-26,23-lactone. Archives of Biochemistry and Biophysics 204: 387391.CrossRefGoogle Scholar
Olson, E. B. Jr., Knutson, J. C., Bhattacharyya, M. H. and DeLuca, H. F. (1976). The effect of hepatectomy on the synthesis of 25-hydroxyvitamin D3. Journal of Clinical Investigation 57: 12131220.CrossRefGoogle ScholarPubMed
Peterson, C. F., (1965). Factors influencing egg shell quality. World's Poultry Science Journal 21: 110138.CrossRefGoogle Scholar
Polin, D. and Ringer, R. K. (1977). 25-hydroxy D3, vitamin D3 and graded levels of phosphorus: Effect on egg production and shell quality. Feedstuffs 49: 4041.Google Scholar
Ponchon, G., Kennan, A. L. and DeLuca, H. F. (1969). “Activation” of vitamin D by the liver. Journal of Clinical Investigation 48: 20322037.CrossRefGoogle ScholarPubMed
Reddy, C. V., Stanford, P. E. and Clegg, R. E. (1968). Influence of calcium in laying hens on shell quality and interior quality of eggs. Poultry Science 47: 10771083.CrossRefGoogle Scholar
Roland, D. A. Sr. (1980). The ability of young and old hens to change shell deposition with sudden natural drastic changes in egg size. Poultry Science 59: 924926.CrossRefGoogle Scholar
Roland, D. A. Sr. and Harms, H. R. (1973). Calcium metabolism in the laying hen. 5. Effect of various sources of sizes of calcium carbonate on shell quality. Poultry Science 52: 369372.CrossRefGoogle ScholarPubMed
Roland, D. A. Sr. and Harms, R. H. (1976). The lack of response of 25-hydroxyvitamin D on egg shell quality or other criteria in laying hens. Poultry Science 55: 10831985.CrossRefGoogle Scholar
Scott, M. L., Nesheim, M. C. and Young, R. J. (1982). Nutrition of the chicken. M. L. Scott & Associates, Ithaca, New York.Google Scholar
Scott, M. L., Ontillon, A. and Mullenhoff, P. A. (1975). The effect of levels of calcium, phosphorus and vitamin D on bone development and egg shell quality in modern laying hens. Proceedings Cornell, Nutrition Conference pages 77–80.Google Scholar
Seelig, M. S. (1980). Skeletal and renal effects of magnesium deficiency. In Magnesium Deficiency in the Pathologenesis of Disease. Seelig, M. S. (ed.). Plenum Medical Book Company, New York. pages 267356.CrossRefGoogle Scholar
Shen, H., Summers, J. D. and Leeson, S. (1981). Egg production and shell quality of layers fed various levels of vitamin D3. Poultry Science 60: 14851490.CrossRefGoogle Scholar
Shen, H., Summers, H. D. and Leeson, S. (1982). Influence of a vitamin D deficiency on egg shell, membrane and egg shell weight. Poultry Science 61: 746749.CrossRefGoogle Scholar
Soares, J. H. Jr., Swerdel, M. R. and Bossard, E. H. (1978). Phosphorus availability. 1. The effect of chick age and vitamin-D metabolites on the availability of phosphorus in defluorinated phosphate. Poultry Science 57: 13051312.CrossRefGoogle ScholarPubMed
Spanos, E., Pike, J. W., Haussler, M. R., Colston, K. W., Goldner, I. M. A., McCain, T. A. and Macintyre, I. (1976). Circulating 1,25-dihydroxyvitamin D in the chicken: Enhancement by injection of prolactin and during egg laying. Life Science 19: 17511756.CrossRefGoogle Scholar
Steele, T. H., Engle, J. E., Tanaka, Y., Lorenc, R. S., Dudgeon, K. L. and DeLuca, H. F. (1975). Phosphatemic action of 1,25-dihydroxyvitamin D3. American Journal of Physiology 229: 489495.CrossRefGoogle ScholarPubMed
Steenbock, H. (1924). The induction of growth promoting and calcifying properties in a ration by exposure to light. Science 60: 224225.CrossRefGoogle Scholar
Steenbock, H., Kletzien, S. W. F. and Halpin, J. G. (1932). The reaction of the chicken to irradiated ergosterol and irradiated yeast as contrast with the natural vitamin B of fish liver oils. Journal of Biological Chemistry 97: 249264.CrossRefGoogle Scholar
Stumpf, W. E., Sar, M., Reid, F. A., Tanaka, Y. and DeLuca, H. F. (1979). Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary and parathyroid. Science 206: 11881190.CrossRefGoogle ScholarPubMed
Sturkie, P. D. and Mueller, W. J. (1976). Reproduction in the female and egg formation. In. Avian Physiology. Sturkie, P. D. (ed.). Springer-Verlag New York. pages 331347.CrossRefGoogle Scholar
Suda, T., Horiuchi, N., Fukushima, M., Nishii, Y. and Ogata, E. (1977). Regulation of the metabolism of Vitamin D3 and 25-hydroxyvitamin D3. In Norman, A. W., Schaefer, K., Coburn, J. W., DeLuca, H. F., Fraser, B., Grigoleit, H. G. and Herrath, B., Vitamin D: Biochemical, Chemical and Clinical aspects related to calcium metabolism. Berlin: Walter de Gruyter pages 201210.CrossRefGoogle Scholar
Sunde, M. L. (1975). What about 25-hydroxycholecaliferol for poultry? Proceedings Distribution Feed Research Council 30: 5362.Google Scholar
Sunde, M. L., Turk, C. M. and DeLuca, H. F. (1978). Essentiality of vitamin D metabolites for embryonic chick development. Science 200: 10671069.CrossRefGoogle ScholarPubMed
Sutton, R. A. L. and Dirk, J. H. (1978). Renal handling of calcium. Federation Proceedings 37: 21122119.Google ScholarPubMed
Tanaka, Y., Castillo, L. and DeLuca, H. F. (1976). Control of the renal vitamin D hydroxylase in birds by the sex hormone. Proceedings National Academy of Science U.S.A. 73: 27012705.CrossRefGoogle Scholar
Tanaka, Y. and DeLuca, H. F. (1973). The control of 25-hydroxy-vitamin D metabolism by inorganic phosphorus. Archives Biochemistry and Biophysics 154: 556574.CrossRefGoogle Scholar
Tanaka, Y., DeLuca, H. F., Kobayashi, Y., Taguchi, T., Ikekawa, N. and Morisaki, M. (1979). Biological activity of 24,24-difluoro-25-hydroxyvitamin D3. Journal of Biological Chemistry 254: 71637167.CrossRefGoogle ScholarPubMed
Tanaka, Y., Frank, H., DeLuca, H. F.Koizumi, N. and Ikekawa, N. (1975). Importance of the stereochemical position of the 24-hydroxyl to biological activity of 24-hydroxyvitamin D3. Biochemistry 14: 32933296.CrossRefGoogle ScholarPubMed
Tanaka, Y., Lorenc, R. S. and DeLuca, H. F. (1975a). The role of 1,25-dihydroxyvitamin D and parathyroid hormone in the regulation of chick renal 25-hydroxyvitamin D3-24-hydroxylase. Archives of Biochemistry and Biophysics 171: 521526.CrossRefGoogle Scholar
Tanaka, Y., Schones, H. K., Smith, C. M. and DeLuca, H. F. (1981). 1,25,26-trihydroxyvitamin D3: Isolation, identification and biological activity. Archives of Biochemistry and Biophysics 210: 104109.CrossRefGoogle ScholarPubMed
Takashi, N., Abe, E., Tanabe, R. and Suda, T. (1980). A high affinity cytosol binding protein for 1,25-dihydroxyvitamin D3 in the uterus of Japanese Quail. Biochemistry Journal 190: 513518.CrossRefGoogle Scholar
Tucker, G. III, Gagnon, R. E. and Hussler, M. R. (1973). Vitamin D3-25-hydroxylase: Tissue occurrence and apparent lack of regulation. Archives of Biochemistry and Biophysics 155: 4757.CrossRefGoogle Scholar
Waddell, J. (1934). The provitamin D of cholesterol. 1. The antirachitie efficacy of irradiated cholesterol. Journal of Biological Chemistry 105: 711739.CrossRefGoogle Scholar
Wong, R. G., Norman, A. W., Reddy, C. R. and Coburn, J. W. (1972). Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats. Journal Clinical Investigation 51: 12871291.CrossRefGoogle ScholarPubMed
Yamada, S., Ohmore, M. and Takayama, H. (1979). Synthesis of 24,24-difluoro-25-hydroxyvitamin D3. Tetrahedron Letters 21: 18591862.CrossRefGoogle Scholar
Yannakopoulos, A. L. and Morris, T. R. (1979). Effect of light, vitamin D and dietary phosphorus on egg shell quality late in the pullet laying year. British Poultry Science 20: 337342.CrossRefGoogle Scholar