Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T10:33:00.719Z Has data issue: false hasContentIssue false

Estimations of Amino Acid Digestibility and Availability in Feedstuffs for Poultry

Published online by Cambridge University Press:  18 September 2007

Manthos C. Papadopoulos
Affiliation:
Department of Animal ScienceAgricultural University WageningenP.O. Box 338, 6700 AH Wageningen, Netherlands
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achinewhu, S. C. and Hewitt, D. (1979). Assessment of nutritional quality of proteins: the use of ‘ileal’ digestibilities of amino acids as measures of their availabilities. British Journal of Nutrition 41: 559.CrossRefGoogle ScholarPubMed
Akeson, W. R. and Stahmann, M. A. (1964). A Pepsin Pancreatin Digest Index of protein quality evaluation. Journal of Nutrition 83: 257.CrossRefGoogle ScholarPubMed
Barlow, S. M., Collier, G. S., Jurtiz, J. M., Burt, J. R., Opstvedt, J. and Miller, E. L. (1984). Chemical and biological assay procedures for lysine in fish meals. Journal of the Science of Food and Agriculture 35: 154.CrossRefGoogle ScholarPubMed
Bielorai, R., Harduf, Z., Iosif, B. and Alumot, E. (1983). Apparent amino acid absorption from feather meal by chicks. British Journal of Nutrition 49: 395.CrossRefGoogle ScholarPubMed
Booth, V. T. (1971). Problems in the determination of FDNB-available lysine. Journal of the Science of Food and Agriculture 22: 658.;CrossRefGoogle ScholarPubMed
Bos, K. D., Verbeek, C. and Slump, P. (1983). A gas-liquid chromatographic method for the analysis of methionine and of methionine sulfoxide in proteins. Journal of Agricultural and Food Chemistry 31: 63.CrossRefGoogle ScholarPubMed
Boyne, A. W., Ford, J. E., Hewitt, D. and Shrimpton, D. H. (1975). Protein quality of feeding-stuffs. 7. Collaborative studies on the microbiological assay of available amino acids. British Journal of Nutrition 34: 153.CrossRefGoogle ScholarPubMed
Bragg, D. B., Ivy, C. A. and Stephenson, E. L. (1969). Methods for determining amino acid availability of foods. Poultry Science 48: 2135.CrossRefGoogle Scholar
Burgos, A., Floyd, J. I. and Stephenson, E. L. (1974). The amino acid content and availability of different samples of poultry by-product meal, and feather meal. Poultry Science 53: 198.CrossRefGoogle Scholar
Campbell, R. C. (1966). The chick assay of lysine. Biometrics 22: 58.CrossRefGoogle ScholarPubMed
Carpenter, K. J. (1960). The estimation of the available lysine in animal-protein foods. Biochemical Journal 77: 604.CrossRefGoogle ScholarPubMed
Carpenter, K. J., McDonald, I. and Miller, W. S. (1972). Protein quality of feeding-stuffs. 5. Collaborative studies on the biological assay of available methionine using chicks. British Journal of Nutrition 27: 7.CrossRefGoogle ScholarPubMed
Carpenter, K. J. and Woodham, A. A. (1974). Protein quality of feeding-stuffs. 6. Comparisons of the results of collaborative biological assays for amino acids with those of other methods. British Journal of Nutrition 32: 647.CrossRefGoogle ScholarPubMed
Cave, N. A. and Williams, C. J. (1980). A chick assay for availability of lysine in wheat. Poultry Science 59: 799.CrossRefGoogle ScholarPubMed
Couch, J. R. (1975). Collaborative study of the determination of available lysine in proteins and feeds. Journal of the Association of Official Agricultural Chemists 58: 599.Google ScholarPubMed
Dvorak, Z. (1968). Availability of essential amino acids from proteins. 1. Beef serum albumin. Journal of the Science of Food and Agriculture 19: 71.CrossRefGoogle Scholar
Eklund, A. (1976). On the determination of available lysine in casein and rapeseed protein concentrates using 2, 4, 6-trinitrobenzene-sulphonic acid (TNBS) as a reagent for free epsilon amino group of lysine. Analytical Biochemistry 70: 434.CrossRefGoogle Scholar
El Boushy, A. R. and Roodbeen, A. E. (1980). Amino acid availability in lavera yeast compared with soybean and herring meal. Poultry Science 59: 115.CrossRefGoogle Scholar
Ellinger, G. M. and Duncan, A. (1976). The determination of methionine in proteins by gas-liquid chromatography. Biochemical Journal 155: 615.CrossRefGoogle ScholarPubMed
Elwell, D. and Soares, J. H. Jr. (1975). Amino acid bioavailability: A comparative evaluation of several assay techniques. Poultry Science 54: 78.CrossRefGoogle ScholarPubMed
Erberschobler, F H. und Riedel, G. (1972). Bestimmung der Aminosäuren-verdaulichkeit beikeimfrei und konventionell gehaltenen Küken. Archiv für Geflügelkunde 36: 218.Google Scholar
Farrell, D. J. and Raharjo, Y. (1982). Ileal digestion of dietary amino acids in poultry feedstuffs. Proceedings Maryland Nutrition Conference for Feed Manufacturers.March 18-19, pp. 26.Google Scholar
Fernell, W. R. and Rosen, G. D. (1956). Microbiological evaluation of protein quality with Tetrahymena pyriformis W. 1. Characteristics of growth of the organism and determination of relative nutritive values of intact proteins. British Journal of Nutrition 10: 143.CrossRefGoogle Scholar
Finney, D. J. (1964). Statistical method in biological assay. 2nd ed., Charles Griffin and Co., London.Google Scholar
Finot, P. A. (1973). Non-enzymic browing. In ‘Proteins in Human Nutrition’. Porter, J. W. G. and Rolls, B. A., eds., Academic Press. London and New York, pp. 501.Google Scholar
Ford, D. J. (1976). The effect of methods of sterilization on the nutritive value of protein in a commercial rat diet. British Journal of Nutrition 35: 267.CrossRefGoogle Scholar
Ford, J. E. (1960). A microbiological method for assessing the nutritional value of proteins. British Journal of Nutrition 14: 485.CrossRefGoogle ScholarPubMed
Ford, J. E. (1962). A microbiological method for assessing the nutritional value of proteins. 2. The measurement of ‘available’ methionine, leucine, isoleucine, arginine, histidine, tryptophan and valine. British Journal of Nutrition 16: 409.CrossRefGoogle ScholarPubMed
Ford, J. E. (1964). A microbiological method for assessing the nutritional value of proteins. 3. Further studies on the measurement of available amino acids. British Journal of Nutrition 18: 449.CrossRefGoogle ScholarPubMed
Gruhn, K. (1974). Vergleichende Untersuchungen zur N-Exkretion und Aminosäurenresorption mit zwei proteinreichen Weizensorten an Legehennen. Archiv für Tierernährung 24: 85.CrossRefGoogle Scholar
Guggenheim, K., Halevy, S. and Friedmann, N. (1960). Levels of lysine and methionine in portal blood of rats following protein feeding. Archives of Biochemistry and Biophysics 91: 6.CrossRefGoogle ScholarPubMed
Holguin, M. and Nakai, S. (1980). Accuracy and specificity of the dinitrobenzenesulfonate methods for available lysine in proteins. Journal of Food Science 45: 1218.CrossRefGoogle Scholar
Holz, F. (1972). Automatische Bestimmung von Tryptophan in Proteinen und proteinhaltigen Pflanzenprodukten mit Dimethylaminozimtaldehyd. Landwirtschaftliche Forschung 27: 96.Google Scholar
Hurrel, R. F., Lerman, P. and Carpenter, K. J. (1979). Reactive lysine in feedstuffs as measured by a rapid dye-binding procedure. Journal of Food Science 44: 1221.CrossRefGoogle Scholar
Ivy, C. A., Bragg, D. B. and Stephenson, E. L. (1971). The availability of amino acids from soybean meal for the growing chick. Poultry Science 50: 408.CrossRefGoogle Scholar
Kakade, M. L. and Liener, I. E. (1969). Determination of available lysine in proteins. Analytical Biochemistry 27: 273.CrossRefGoogle ScholarPubMed
Kessler, J. W. and Thomas, O. P. (1981). The effect of cecoctomy and extension of the collection period on the true metabolizable energy values of soybean meal, feather meal, fish meal, and blood meal. Poultry Science 60: 2639.CrossRefGoogle Scholar
Kuiken, K. A. and Lyman, C. M. (1948). Availability of amino acids in some foods. Journal of Nutrition 36: 359.CrossRefGoogle ScholarPubMed
Likuski, H. J. and Dorrell, H. G. (1978). A bioassay for rapid determinations of amino acid availability values. Poultry Science 57: 1658.CrossRefGoogle Scholar
Lipton, S. H. and Bodwell, C. E. (1977). A rapid method for detecting chemical alteration of methionine. Journal of Agricultural and Food Chemistry 25: 1214.CrossRefGoogle ScholarPubMed
Longenecker, J. B. and Lo, G. S. (1974). Protein digestibility and amino acid availability—assessed by concentration changes of plasma amino acids. In ‘Nutrients in Processed Foods: Proteins’. White, P. L. and Fletcher, D. C., eds., Publishing Sciences Group, Aston, pp. 139.Google Scholar
Maga, J. A. (1981). Measurement of available lysine using the quanidination reaction. Journal of Food Science 46: 132.CrossRefGoogle Scholar
Major, E. J. and Batterham, E. S. (1981). Availability of lysine in protein concentrates as determined by the slope-ratio assay with chicks and comparisons with rat, pig and chemical assays. British Journal of Nutrition 46: 513.CrossRefGoogle ScholarPubMed
Mason, V. C. and Palmer, R. (1973). The influence of bacterial activity in the alimentary canal of rats on faecal nitrogen excretion. Acta Agriculturae Scandinavica 23: 141.CrossRefGoogle Scholar
McBee, L. E. and Marshall, R. T. (1978). Ezymatic estimation of available lysine. Journal of Food Science 43: 1355.CrossRefGoogle Scholar
Miller, E. L., Carpenter, K. J., Morgan, C. B. and Boyne, A. W. (1965). Availability of suphur amino acids in protein foods. 2. Assessment of available methionine by chick and microbiological assay. British Journal of Nutrition 19: 249.CrossRefGoogle Scholar
Muztar, A. J. and Slinger, S. J. (1980). The effect of dry matter on metabolic and endogenous amino acid excretion in mature cockerels. Nutrition Reports International 22: 901.;Google Scholar
Muztar, A. J., Slinger, S. J., Likuski, H. J. A. and Dorrell, H. G. (1980). True amino acid availability values for soybean meal and tower and candle rapeseed and rapeseed meals determined in two laboratories. Poultry Science 59: 605.CrossRefGoogle Scholar
Nesheim, M. C. and Carpenter, K. J. (1967). The digestion of heat-damaged protein. British Journal of Nutrition 21: 399.CrossRefGoogle ScholarPubMed
Netke, S. P. and Scott, H. M. (1970). Estimates on the availability of amino acids in soybean oil meal as determined by chick growth assay: Methodology as applied to lysine. Journal of Nutrition 100: 281.CrossRefGoogle ScholarPubMed
Njike, M. C., Mba, A. V. and Oyenuga, V. A. (1975). Chick bioassay of available methionine and methionine plus cystine. Development of assay procedure. Journal of Science of Food and Agriculture 26: 175.CrossRefGoogle ScholarPubMed
Noll, S. L., Waibel, P. E. and Behrends, B. R. (1984). Available lysine content of blood meals determined by turkey bioassay and fluorodinitro-benzene assay. Poultry Science 63: 144.CrossRefGoogle Scholar
Nwokolo, E. N., Bragg, D. B. and Kitts, W. D. (1976). The availability of amino acids from palm kernel, soybean, cottonseed and rapeseed meal for the growing chick. Poultry Science 55: 2300.CrossRefGoogle Scholar
Ousterhout, L. E., Grau, C. R. and Lundholm, B. D. (1959). Biological availability of amino acids in fish meals and other protein sources. Journal of Nutrition 69: 65.CrossRefGoogle ScholarPubMed
Papadopoulos, M. C. (1984). Feather meal: evaluation of the effect of processing conditions by chemical and chick assays. Thesis, Agricultural University, Wageningen.Google Scholar
Papadopoulos, M. C., El Boushy, A. R., Roodbeen, A. E. and Ketelaars, E. H. (1983). Feather meal protein and amino acid digestibility under different processing conditions. Proceedings of the International Symposium on Animals as Waste Converters,Wageningen,30 November-2 December 1983 (in press).Google Scholar
Parsons, C. M., Potter, L. M. and Brown, R. D. Jr. (1981). True metabolizable energy and amino acid digestibility of dehulled soybean meal. Poultry Science 50: 2687.CrossRefGoogle Scholar
Parsons, C. M., Potter, L. M. and Brown, R. D. Jr. (1982). Effects of dietary protein and intestinal microflora and excretion of amino acids in poultry. Poultry Science 61: 939.CrossRefGoogle Scholar
Parsons, C. M., Potter, L. M. and Brown, R. D. Jr. (1983). Effects of dietary carbohydrate and intestinal microflora on excretion of endogenous amino acids by poultry. Poultry Science 62: 483.CrossRefGoogle ScholarPubMed
Payne, J. W., Bell, G. and Higgins, C. F. (1977). The use of an Escherichia coli Lys auxotroph to assay nutritionally available lysine in biological materials. Journal of Applied Bacteriology 42: 165.CrossRefGoogle ScholarPubMed
Payne, W. L., Combs, G. F., Kifer, R. R. and Snyder, D. G. (1968). Investigation of protein quality-ileal recovery of amino acids. Federation Proceedings 27: 1199.Google ScholarPubMed
Payner, C. J. and Fox, M. (1976). Amino acid digestibility studies of autoclaved rapeseed meals using an in vitro enzymatic procedure. Journal of the Science of Food and Agriculture 27: 643.Google Scholar
Payner, C. J. and Fox, M. (1978). Measurement of available lysine in processed beef muscle by various laboratory procedures. Journal of Agricultural and Food Chemistry 26: 494.Google Scholar
Picard, M., Bertrand, S., Duron, M. and Maillard, R. (1983). Comparative digestibility of amino acids using 5 animal models: intact cockerel, caecectomised cockerels, rat deprived of large intestine, piglet with an ileo caecal canulation, piglet with an ileo rectal shunt. Proceedings of the 4th European Symposium on Poultry Nutrition,Tours,October 17-20, 1983 (in press).Google Scholar
Pieniazek, D., Grabarek, Z. and Rakowska, M. (1975). Quantative determination of the content of available methionine and cysteine in food proteins. Nutrition and Metabolism 18: 16.CrossRefGoogle Scholar
Reddy, S. J., McGinnis, J., Muehlbauer, F. and Campbell, A. (1979). Methionine content and availability in varieties and breeding lines of peas for chicks. Poultry Science 58: 376.CrossRefGoogle Scholar
Roach, A. G., Sanderson, P. and Williams, D. R. (1957). Comparison of methods for the determination of available lysine value in animal and vegetable protein sources. Journal of the Science of Food and Agriculture 18: 274.CrossRefGoogle Scholar
Robel, E. J. (1980). Use of the parallel line assay for estimating amino acids in soybean meal for chicks. Poultry Science 59: 149.CrossRefGoogle Scholar
Salmon, R. E. (1984). True metabolizable energy and total and available amino acids of candle, altex, and regent canola meals. Poultry Science 63: 135.CrossRefGoogle Scholar
Salter, D. N. and Coates, M. E. (1971). The influence of the microflora of the alimentary tract on protein digestion in the chick. British Journal of Nutrition 26: 55.CrossRefGoogle ScholarPubMed
Salter, D. N. and Fulford, R. J. (1974). The influence of the gut microflora on the digestion of dietary and endogenous proteins: studies of the amino acid composition of the excreta of germ-free and conventional chicks. British Journal of Nutrition 32: 625.CrossRefGoogle ScholarPubMed
Sauer, W. C., Stothers, S. C. and Parker, R. J. (1977). Apparent and true availabilities of amino acids in wheat and milling by-products for growing pigs. Canadian Journal of Animal Science 57: 775.CrossRefGoogle Scholar
Schweigert, B. S. (1948). Availability of tryptophan from various products for growth of chicks. Archives of Biochemistry 19: 265.Google ScholarPubMed
Sheffner, A. L., Eckfeldt, G. A. and Spector, H. (1956). The pepsin-digest-residue (PDR) amino acid index of net protein utilization. Journal of Nutrition 60: 105.CrossRefGoogle Scholar
Shepherd, N. D., Taylor, T. G. and Wilton, D. C. (1977). An improved method for the microbiological assay of available amino acids in proteins using Tetrahymena pyriformis. British Journal of Nutrition 38: 245.CrossRefGoogle ScholarPubMed
Shorrock, C. (1976). An improved procedure for the assay of available lysine and methionine in feedstuffs using Tetrahymena pyriformis W. British Journal of Nutrition 35: 333.CrossRefGoogle ScholarPubMed
Sibbald, I. R. (1976). A bioassay for true metabolizable energy in feedstuffs. Poultry Science 55: 303.CrossRefGoogle Scholar
Sibbald, I. R. (1980). The effects of dietary cellulose and sand on the combined metabolic plus endogenous energy and amino acid outputs of adult cockerels. Poultry Science 59: 836.CrossRefGoogle Scholar
Smith, R. C. (1972). Acetylation of methionine sulfoxide and methionine sulfone by the rat. Biochemica et Biophysica Acta 261: 304.CrossRefGoogle Scholar
Smith, R. E. (1968). Assessment of the availability of amino acids in fish meal, soybean meal and feather meal, by chick growth assay. Poultry Science 47: 1624.CrossRefGoogle Scholar
Smith, R. E. and Scott, H. M. (1965). Use of free amino acid concentrations in blood plasma in evaluating the amino acid adequacy of intact proteins for chick growth. 11. Free amino acid patterns of blood plasma of chicks fed sesame and raw, heated and overheated soybean meals. Journal of Nutrition 86: 45.CrossRefGoogle Scholar
Soares, J. H. Jr., Miller, D., Fitz, N. and Sanders, M. (1971). Some factors affecting the biological availability of amino acids in fish protein. Poultry Science 50: 1134.CrossRefGoogle ScholarPubMed
Splitter, J. L. and Shipe, W. F. (1976). Enzymatic hydrolysis and vole bioassay for estimation of the nutritive quality of maize. Journal of Food Science 41: 1387.CrossRefGoogle Scholar
Stockland, W. L. and Meade, R. J. (1970). Meat and bone meals as sources of amino acids for the growing rat: Use of a reference diet to predict amino acid adequacy by levels of plasma free amino acids. Journal of Animal Science 31: 1156.CrossRefGoogle ScholarPubMed
Stockland, W. L., Meade, R. J. and Nordstrom, J. W. (1970). Meat and bone meals as sources of amino acids for growing swine: Use of a reference diet to predict amino acid adequacy by plasma levels. Journal of Animal Science 31: 1142.CrossRefGoogle ScholarPubMed
Stott, J. A. and Smith, H. (1966). Microbiological assay of protein quality with Tetrahymena pyriformis W. 4. Measurement of available lysine, methionine, arginine and histidine. British Journal of Nutrition 20: 662.CrossRefGoogle Scholar
Summers, D. J., Berzins, R. and Robblee, A. R. (1982). Ileal cannulation of chickens. Poultry Science 61: 1151.Google Scholar
Terpstra, K. (1977). Determination of the digestibility of protein and amino acids in poultry feeds. Vth International Symposium on Amino Acids,Budapest, C-10: 1.Google Scholar
Thomas, O. P. and Crissey, S. D. (1983). Recent advances in the field of amino acid bioavailability. Proceedings of the 4th European Symposium on Poultry Nutrition,Tours,October 17-20, 1983 (in press).Google Scholar
Valle-Riestra, J. and Barnes, R. J., (1970). Digestion of heat-damaged egg albumen by the rat. Journal of Nutrition 100: 873.CrossRefGoogle ScholarPubMed
Varnish, S. A. and Carpenter, K. J. (1975). Mechanisms of heat damage in proteins. 6. The digestibility of individual amino acids in heated and propionylated proteins. British Journal of Nutrition 34: 339.CrossRefGoogle ScholarPubMed
Waibel, P. E., Cuperlovic, M., Hurrell, R. F. and Carpenter, K. J. (1977). Processing damage to lysine and other amino acids in the manufacture of blood meal. Journal of Agricultural and Food Chemistry 25: 171.CrossRefGoogle Scholar
Windels, H. F., Meade, R. J., Nordstrom, J. W. and Stockland, W. L. (1971). Influence of source and level of dietary protein on plasma free amino acid concentrations in growing swine. Journal of Animal Science 32: 268.CrossRefGoogle ScholarPubMed
Zebrowska, T. (1973). Digestion and absorption of nitrogenous compounds in the large intestine of pigs. Roczniki Nauk Roniczych B-95: 85.Google Scholar