Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T02:42:20.412Z Has data issue: false hasContentIssue false

First century of chicken gene study and mapping – a look back and forward

Published online by Cambridge University Press:  18 September 2007

M.N. Romanov*
Affiliation:
Department of Microbiology and Molecular Genetics, 2209 Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824–4320, USA
A.A. Sazanov
Affiliation:
All-Russian Institute of Animal Genetics and Breeding, Russian Academy of Agricultural Science, Moskovskoye shosse 55A, St Petersburg – Pushkin 189620, Russia Biological Research Institute, St Petersburg State University, Oranienbaumskoye shosse 2, St Petersburg – Stary Petergof 198504, Russia
A.F. Smirnov
Affiliation:
All-Russian Institute of Animal Genetics and Breeding, Russian Academy of Agricultural Science, Moskovskoye shosse 55A, St Petersburg – Pushkin 189620, Russia Biological Research Institute, St Petersburg State University, Oranienbaumskoye shosse 2, St Petersburg – Stary Petergof 198504, Russia
*
*Corresponding author: e-mail: romanoff@msu.edu
Get access

Abstract

Chicken gene inheritance analysis, started one century ago, had led to the development of the classical genetic map. Efforts and legacy of the previous geneticists' generations are not forgotten and constitute the fundamentals of contemporary genome research progress. Advances in molecular biology, cytogenetics and DNA technologies provided more powerful and sophisticated tools to tackle chicken gene mapping and genome research problems. In the 1990s configurations of chicken molecular and cytogenetic maps had begun standing out. New horizons in chicken genomics are opening with application of BAC libraries, BAC-contig physical maps, ESTs and whole genome sequencing. The chicken has been a notable experimental model for several fundamental and applied biologic disciplines in the last century, and will remain such in the 21st century. The upcoming complete genome sequencing combined with discovering gene functions will facilitate the improvement of traits of economic importance and value in poultry.

Type
Reviews
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambady, S., Cheng, H.H. and Ponce de Leon, F.A. (2002) Development and mapping of microsatellite markers derived from chicken chromosome-specific libraries. Poultry Science 81: 16441646.Google Scholar
Andreozzi, L., Federico, C., Motta, S., Saccone, S., Sazanova, A.L., Sazanov, A.A., Smirnov, A.F., Galkina, S.A., Lukina, N.A., Rodionov, A.V., Carels, N. and Bernardi, G. (2001) Compositional mapping of chicken chromosomes and identification of the gene-richest regions. Chromosome Research 9: 521532.Google Scholar
Baratti, M., Alberti, A., Groenen, M., Veenendaal, T. and Fulgheri, E.D. (2001) Polymorphic microsatellites developed by cross-species amplifications in common pheasant breeds. Animal Genetics 32: 222225.CrossRefGoogle ScholarPubMed
Bateson, W. (1909) Mendel's Principles of Herediry. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Bateson, W. and Punnett, R.C. (1911) The inheritance of peculiar pigmentation of the Silky fowl. Journal of Genetics 1: 185203.Google Scholar
Bateson, W. and Saunders, E.R. (1902) Experimental studies in the physiology of heredity. Reporrs to the Evolution committee of the Royal Society 1: 1160.Google Scholar
Bennett, M.D., Leitch, I.J., Price, H.J. and Johnston, J.S. (2003) Comparisons with Caenorhabditis (˜100 Mb) and Drosophila (˜175 Mb) using flow cytometry show genome size in Arabidopsis to be ˜157 Mb and thus ˜25% larger than the Arabidopsis genome initiative estimate of ˜125 Mb. Annals of Botany 91: 547557.Google Scholar
Bitgood, J.J. and Shoffner, R.N. (1990) Cytology and cytogenetics. In: Poultry Breeding and Genetics (Ed. Crawford, R.D.), Elsevier Science Publishers B.V., Amsterdam, The Netherlands, pp. 401427.Google Scholar
Bitgood, J.J. and Somes, R.G. Jr. (1990) Linkage relationships and gene mapping. In: Poultry Breeding and Genetics (Ed. Crawford, R.D.), Elsevier Science Publishers B.V., Amsterdam, The Netherlands, pp. 469495.Google Scholar
Bitgood, J.J. and Somes, R.G. Jr. (1993) Gene map of the chicken (Gallus gallus or G. domesticus). In: Generic Maps (Ed. O'Brien, S.), 6th edn, Cold Spring Harbor Laboratory Press, , Cold Spring Harbor, NY, USA, pp. 43324342.Google Scholar
Bloom, S.E., Delany, M.E. and Muscarella, D.E. (1993) Constant and variable features of avian chromosomes. In: Manipulation of the Avian Genome (Eds. Etches, R.J. and Verrinder Gibbins, A.M.), CRC Press, Boca Raton, FL, USA, pp. 3959.Google Scholar
Brown, W.R., Hubbard, S.J., Tickle, C. and Wilson, S.A. (2003) The chicken as a model for large-scale analysis of vertebrate gene function. Nature Review Genetics 4: 8798.Google Scholar
Boardman, P.E., Sanz-Ezquerro, J., Overton, I.M., Burt, D.W., Bosch, E., FONG, W.T., Tickle, C., Brown, W.R., Wilson, S.A. and Hubbard, S.J. (2002) A comprehensive collection of chicken cDNAs. Current Biology 12: 19651969.Google Scholar
Buitkamp, J., Ewald, D., Schalkwyk, L., Weiher, M., Masabanda, J., Sazanov, A., Lehrach, H. and Fries, R. (1998) Construction and characterisation of a gridded chicken cosmid library with four-fold genomic coverage. Animal Genetics 29: 295301.Google Scholar
Bumstead, N. and Palyga, J. (1992) A preliminary linkage map of the chicken genome. Genomics 13: 690697.Google Scholar
Burt, D.W. (2002) Origin and evolution of avian microchromosomes. Cytogenetic and Genome Research 96: 97112.Google Scholar
Burt, D.W. and Pourquié, O. (2003) Chicken genome-science nuggets to come soon. Science 300: 1669.Google Scholar
Burt, D.W., Bruley, C., Dunn, I.C., Jones, C.T., Ramage, A., Law, A.S., Morrice, D.R., Paton, I.R., Smith, J., Windsor, D., Sazanov, A., Fries, R. and Waddington, D. (1999) The dynamics of chromosome evolution in birds and mammals. Nature 402: 411413.Google Scholar
Burt, D.W., Morrice, D.R., Sewalem, A., Smith, J., Paton, I.R., Smith, E.J., Bentley, J. and Hocking, P.M. (2003) Preliminary linkage map of the Turkey (Meleagris gallopavo) based on microsatellite markers. Animal Genetics 34: 399409.Google Scholar
Cohen, D., Chumakov, I. and Weissenbach, J. (1993) A first-generation physical map of the human genome. Nature 366: 698701.Google Scholar
Collins, F.S., Patrinos, A., Jordan, E., Chakravarti, A., Gesteland, R., Walters, L. and the members of the DOE and NIH planning groups (1998) New goals for the U.S. human genome project: 1998–2003. Science 282: 682689.Google Scholar
Crittenden, L.B., Provencher, L., Santangelo, L., Levin, I., Abplanalp, H., Briles, R.W., Briles, W.E. and Dodgson, J.B. (1993) Characterisation of a Red Jungle Fowl by White Leghorn backcross reference population for molecular mapping of the chicken genome. Poultry Science 72: 334348.Google Scholar
Crooijmans, R.P.M.A., Vrebalov, J., Dijkhof, R.J.M., Van Der Poel, J.J. and Groenen, M.A.M. (2000) Two-dimensional screening of the Wageningen chicken BAC library. Mammalian Genome 11: 360363.Google Scholar
Davenport, C.B. (1911) Another case of sex-limited heredity in poultry. Proceedings of the Sociery for Experimental Biology and Medicine 9: 1920.Google Scholar
Davenport, C.B. (1912) Sex-limited inheritance in poultry. Journal of Experimental Zoology 13: 126.Google Scholar
Dranchak, P.K., Chaves, L.D., Rowe, J.A. and Reed, K.M. (2003) Turkey microsatellite loci from an embryonic cDNA library. Poultry Science 82: 526531.Google Scholar
Dunn, I.C., Sharp, P.J., Paton, I.R. and Burt, D.W. (1999) Mapping of the gene responsible for henny feathering (CYPI 9/aromatase) to chicken chromosome E29C09W09. Proceedings of the Poultry Genetics SymposiumMariensee, Germany, p. 114.Google Scholar
Dunn, L.C. (1928) The genetics of the domestic fowl. Journal of Heredity 19: 511519.Google Scholar
Dunn, L.C. (1929) The genetics of the domestic fowl: Memoirs of the Anikowo Genetical Station, 1926.II. The genetics of leg feathering. Journal of Heredity 20: 111118.Google Scholar
Dunn, L.C. and Jull, M.A. (1927) On the inheritance of some characteristics of the Silky fowl. Journal of Genetics 19: 2763.Google Scholar
Dunn, L.C. and Landauer, W. (1930) Further data on a case of autosomal linkage in the domestic fowl. Journal of Genetics 22: 95101.Google Scholar
Durham, F.M. and Marryat, D.C.E. (1908) Note on the inheritance of sex in canaries. Reports to the Evolution Committee of the Royal Society IV: 5760.Google Scholar
Etches, R.J. and Haws, R.O. (1973) A summary of linkage relationships and a revised linkage map of the chicken. Canadian Journal of Genetics and Cytology 15: 553570.Google Scholar
Fillon, V., Morisson, M., Zoorob, R., Auffray, C., Douaire, M., Gellin, J. and Vignal, A. (1998) Identification of 16 chicken microchromosomes by molecular markers using two-colour fluorescence in situ hybridisation (FISH). Chromosome Research 6: 307313.Google Scholar
Goodale, H.D. (1909) Sex and its relation to the barring factor in poultry. Science 29: 10041005.Google Scholar
Goodale, H.D. (1910) Breeding experiments in poultry. Proceedings of the Society for Experimental Biology and medicine 7: 178179Google Scholar
Goodale, H.D. (1911) Sex-limited inheritance and sexual dimorphism in poultry. Science 33: 939940.Google Scholar
Goodale, H.D. (1917) Crossing-over in the sex chromosome of the male fowl. Science 46: 213.Google Scholar
Groenen, M.A.M., Crooijmans, R.P.M.A., Veenendall, A., Van Kaam, J.B.C.H.M., Vereijken, A.L.J., Van Arendonk, J.A.M. and Van Der Poel, J.J. (1997) QTL. mapping in chicken using a three generation full sib family structure of an extreme broiler x broiler cross. Animal Biotechnology 8: 4146.CrossRefGoogle Scholar
Groenen, M.A.M., Crooijmans, R.P.M.A., Veenendaal, A., Cheng, H.H., Siwek, M. and Van Der Poel, J.J. (1998) A comprehensive microsatellite linkage map of the chicken genome. Genomics 49: 265274.Google Scholar
Groenen, M.A.M., Cheng, H.H., Bumstead, N., Benkel, B.F., Briles, W.E., Burke, T., Burt, D.W., Crittenden, L.B., Dodgson, J., Hillel, J., Lamont, S., Ponce de Leon, A., Soller, M., Takahashi, H. and Vignal, A. (2000) A consensus linkage map of the chicken genome. Genome Research 10: 137–47.Google Scholar
Guillier-Gensik, Z., Bernheim, A. and Coullin, P. (1999) Generation of whole-chromosome painting probes specific to each chicken macrochromosomes. Cytogenetics and Cell Genetics 87: 282285.CrossRefGoogle Scholar
Habermann, F., Cremer, M., Walter, J., Kreth, G., Von Hase, J., Bauer, K., Wienberg, J., Cremer, C., Cremer, T. and Solovei, I. (2001) Arrangement of macro– and microchromosomes in chicken cells. Chromosome Research 9: 569584.CrossRefGoogle ScholarPubMed
Hadley, P.B. (1910) Sex-limited inheritance. Science 32: 797.Google Scholar
Hagedoorn, A.L. (1909) Mendelian inheritance of sex. Archiv für Entwicklungsmechanik der Organismen 28: 134.Google Scholar
Haldane, J.B.S. (1921) Linkage in poultry. Science 54: 663.Google Scholar
Harry, D.E., Marini, P.J., Zaitlin, D. and Reed, K.M. (2003) A first generation map of the turkey genome. Genome 46: 914924.Google Scholar
Hertwig, P. (1933) Geschlechtsgebundene und autosomale Koppelungen bei Hühnern. Verhandlungen der Deutschen Zoologischen Gesellschaft E.V. 35: 112118.Google Scholar
Huang, H.B., Song, Y.Q., Hsei, M., Zahorchak, R., Chiu, J., Teuscher, C. and Smith, E.J. (1999) Development and characterisation of genetic mapping resources for the turkey (Meleagris gallopavo). Journal of Heredity 90: 240242.Google Scholar
Hudson, T.J., Stein, L.D., Gerety, S.S., Ma, J., Castle, A.B., Silva, J., Slonim, D.K., Baptista, R., Kruglyak, L., Xu, S.-H., Hu, X., Colbert, A.M.E., Rosenberg, C., Reeve-Daly, M.P., Rozen, S., Hui, L., Wu, X., Vestergaard, C., Wilson, K.M., Bae, J.S., Maitra, S., Ganiatsis, S., Evans, C.A., Deangelis, M.M., Ingalls, K.A., Nahf, R.W., Horton, L.T. Jr., Anderson, M.O., Collymore, A.J., Ye, W., Kouyoumjian, V., Zemsteva, I.S., Tam, J., Devine, R., Courtney, D.F., Renaud, M.T., Ngwen, H., O'Conner, T.J., Fizames, C., Fauré, S., Gyapay, C., Dib, C., Morissette, J., Orlin, J.B., Birren, B.W., Goodman, N., Weissenbach, J., Hawkins, T.L., Foote, S., Page, D.C. and Lander, E.S. (1995) An STS-based map of the human genome. Science 270: 19451954.CrossRefGoogle ScholarPubMed
Hutt, F.B. (1933) Genetics of the fowl. II. A four-gene autosomal linkage group. Genetics 18: 8294.Google Scholar
Hutt, F.B. (1936) Genetics of the fowl. VI. A tentative chromosome map. In: Neue Forschungen in Tierzucht und Abstammungslehre (Duersr Festschrift), pp. 105112.Google Scholar
Hutt, F.B. (1949) Genetics of the Fowl. McGraw-Hill Book Company, Inc., New York, NY, USA.Google Scholar
Hutt, F.B. (1960) New loci in the sex chromosome of the fowl. Heredity 15: 97110.Google Scholar
Hutt, F.B. (1964) Animal Genetics. Ronald Press Company, New York, NY, USA.Google Scholar
Hutt, F.B. and Lamoreux, W.F. (1940) Genetics of the fowl. II. A linkage map for six chromosomes. Journal of Heredity 31: 231235.Google Scholar
Ikeobi, C.O., Woolliams, J.A., Morrice, D.R., Law, A., Windsor, D., Burt, D.W. and Hocking, P.M. (2002) Quantitative trait loci affecting fatness in the chicken. Animal Genetics 33: 428435.CrossRefGoogle ScholarPubMed
Itoh, Y. and Mizuno, S. (2002) Molecular and cytological characterisation of Sspl– family repetitive sequence on the chicken W chromosome. Chromosome Research 10: 499511.Google Scholar
Jull, M.A. (1930) The association of comb and crest characters in the domestic fowl. Journal of Heridity 21: 2128.Google Scholar
Kadi, F., Mouchiroud, D., Sabeur, G. and Bernardi, G. (1993) The compositional patterns of the avian genomes and their evolutionary implications. Journal of Molecular Evolution 37: 544551.Google Scholar
Kato, J., Hattori, T., Ohba, S., Tamaki, Y., Yamada, N., Taguchi, T., Ogihara, J., Ohya, K., Itoh, Y., Hori, T., Asakawa, S., Shimizu, N. and Mizuno, S. (2002) Efficient selection of genomic clones from a female chicken bacterial artificial chromosome library by four-dimensional polymerase chain reactions. Poultry Science 81: 15011508.Google Scholar
Kayang, B.B., Inoue-Murayama, M., Hoshi, T., Matsuo, K., Takahashi, H., Minezawa, M., Mizutani, M. and Ito, S. (2002) Microsatellite loci in Japanese quail and cross-species amplification in chicken and guinea fowl. Genetics Selection Evolution 34: 233253.Google Scholar
Kerje, S., Lind, J., Schütz, K., Jensen, P. and Andersson, L. (2003) Melanocortin I-receptor (MCIR) mutations are associated with plumage colour in chicken. Animal Genetics 34: 264274.Google Scholar
Landauer, W. (1931) The linkage relationships of the autosomal genes for Creeper and Rose comb in the fowl. Anatomical Record 51: 123.Google Scholar
Lee, E.J., Yoshizawa, K., Mannen, H., Kikuchi, H., Kikuchi, T., Mizutani, M. and Tsuji, S. (2002) Localisation of the muscular dystrophy AM locus using a chicken linkage map constructed with the Kobe University resource family. Animal Genetics 33: 4248.Google Scholar
Lee, M.-K., Ren, C.W., Yan, B., Cox, B., Zhang, H.-B., Romanov, M.N., Sizemore, F.G., Suchyta, S.P., Peters, E. and Dodgson, J.B. (2003) Construction and characterisation of three complementary BAC libraries for analysis of the chicken genome. Animal Genetics 34: 151152.Google Scholar
Levin, I., Cheng, H.H., Baxter-Jones, C. and Hillel, J. (1995) Turkey microsatellite DNA loci amplified by chicken specific primers. Animal Genetics 26: 107110.Google Scholar
Lipkin, E., Fulton, J., Cheng, H, Yonash, N. and Soller, M. (2002) Quantitative trait locus mapping in chickens by selective DNA pooling with dinucleotide microsatellite markers by using purified DNA and fresh or frozen red blood cells as applied to marker-assisted selection. Poultry Science 81: 283292.Google Scholar
Lock, R. H. (1906) Recent Progress in the Study of Variation, Heredity, and Evolution. E.P. Dutton & Co., New York, NY, USA.Google Scholar
Maak, S., Wimmers, K., Weigend, S. and Neumann, K. (2003) Isolation and characterisation of 18 microsatellites in the Peking duck (Anas platyrhynchos) and their application in other waterfowl species. Molecular Ecology Notes 3: 224227.Google Scholar
Michelmore, R.W., Paran, I. and Kesseli, R.V. (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America 88: 98289832.Google Scholar
Mizuno, S. and Macgregor, H. (1998) The ZW lampbrush chromosomes of birds: a unique opportunity to look at the molecular cytogenetics of sex chromosomes. CytoGenetics and Cell Genetics 80: 149157.Google Scholar
Moiseyeva, I., Romanov, M. and Pigaryev, N. (2000) Obituary: Sergey Petrov. World's Poultry, Science Journal 56: 437438.Google Scholar
Morgan, T. H. (1910) The method of inheritance of two sex-limited characters in the same animal. Proceedings of the Society for Experimental Biology and Medicine 8: 1719.Google Scholar
Morgan, T. H. (1911) An attempt to analyze the constitution of the chromosomes on the basis of sex-limited inheritance in Drosophila. Journal of Experimental Zoology 11: 365412.Google Scholar
Morgan, T. H. and Goodale, H.D. (1912) Sex-linked inheritance in poultry. Annals of the New York Academy of Sciences 22: 113133.Google Scholar
Morisson, M., Lemière, A., Bosc, S., Galan, M., Plisson-Petit, F., Pinton, P., Delcros, C., Fève, K., Pitel, F., Fillon, V., Yerle, M. and Vignal, A. (2002) ChickRH6 a chicken whole-genome radiation hybrid panel. Genetics Selection Evolution 34: 521533.Google Scholar
Ohno, S. (1961) Sex chromosomes and microchromosomes of Gallus domesticus. Chromosoma 11: 484498.Google Scholar
Okimoto, R., Stie, J.T., Takeuchi, S., Payne, W.S. and Salter, D.W. (1999) Mapping the melanocortin I-receptor (MCI-R) gene and association of MCI-R polymorphisms with E locus phenotypes. Poultry Science 78(Suppl.): 60.Google Scholar
Pang, S.W., Ritland, C., Carlson, J.E. and Cheng, K.M. (1999) Japanese quail microsatellite loci amplified with chicken-specific primers. Animal Genetics 30: 195199.Google Scholar
Passarge, E., Horsthemke, B. and Farber, R.A. (1999) Incorrect use of the term synteny. Nature Genetics 23: 387.Google Scholar
Pearl, R. (1912) Notes on the history of barred breeds of poultry. Biological Bulletin of the Marine Biological Laborarory 22: 297308.Google Scholar
Pearl, R. and Surface, F.M. (1910a) On the inheritance of the barred color pattern in poultry. Archiv für Entwicklungsmechanik der Organismen 30: 4561.Google Scholar
Pearl, R. and Surface, F.M. (1910b) Studies on hybrid poultry. XXVI Annual Report of the Maine Agricultural Experiment Station, pp. 84115.Google Scholar
Pearl, R. and Surface, F.M. (1910c) Further data regarding the sex-limited inheritance of the barred color pattern in poultry. Science 32: 870874.Google Scholar
Petrov, S.G. (1931) Plan of the chromosomes of the domestic fowl. Zhurnal experimental'noy biologii 7: 7176.Google Scholar
Pimentel-Smith, G.E., Shi, L., Drummond, P., Tu, Z. and Smith, E.J. (2000) Amplification of sequence tagged sites in five avian species using heterologous oligonucleotides. Genetica 110: 219226.Google Scholar
Pisenti, J.M., Delany, M.E., Taylor, R.L. Jr., Abbott, U.K., Abplanalp, H.,Arthur, J.A., Bakst, M.R., Baxter-Jones, C., Bitgood, J.J., Bradley, F., Cheng, K.M., Dietert, R.R., Dodgson, J.B., Donoghue, A., Emsley, A.E., Etches, R., Frahm, R.R., Gerrits, R.J., Goetinck, P.F., Grunder, A.A., Harry, D.E., Lamont, S.J., Martin, G.R., Mcguire, P.E., Moberg, G.P., Pierro, L.J., Qualset, C.O., Qureshi, M., Schultz, F. and Wilson, B.W. (1999) Avian genetic resources at risk: an assessment and proposal for conservation of genetic stocks in the USA and Canada. Report No. 20, University of California, Division of Agriculture and Natural Resources, Genetic Resources Conservation Program, Davis, CA, USA.Google Scholar
Pitel, F.,Berge, R., Coquerelle, G., Crooijmans, R.P.M.A., Groenen, M.A.M.,Vignal, A. and Tixier-Boichard, M. (2000) Mapping the Naked Neck (NA) and Folydactyly (PO) mutants of the chicken with microsatellite molecular markers. Genetics Selection Evolution 32: 7386.Google Scholar
Punnett, R. C. and Bateson, W. (1908) The heredity of sex. Science 27: 785787.Google Scholar
Reed, K.M., Mendoza, K.M. and Beattie, C.W. (2000) Comparative analysis of microsatellite loci in chicken and turkey. Genome 43: 796802.Google Scholar
Reed, K.M., Chaves, L.D. and Rowe, J.A. (2002) Twelve new turkey microsatellite loci. Poultry Science 81: 17891791.Google Scholar
Ren, C.W., Lee, M.-K., Yan, B.,Ding, K., Cox, B., Romanov, M.N., Price, J.A., Dodgson, J.B. and Zhang, H.-B. (2003) A BAC-based physical map of the chicken genome. Genome Research 13: 27542758.Google Scholar
Rodionov, A.V. (1996) Micro versus macro: a review of structure and function of avian micro– and macrochromosomes. Genetika 32: 597608.Google Scholar
Rodionov, A.V., Lukina, N.A., Galkina, S.A., Solovei, I. and Saccone, S. (2002) Crossing over in chicken oogenesis: cytological and chiasma-based genetic maps of chicken lampbrush chromosome 1. Journal of Heredity 93: 125129.Google Scholar
Romanov, M.N., Price, J.A. and Dodgson, J.B. (2003) Integration of animal linkage and BAC contig maps using overgo hybridization. Cytogenetic and Genome Research 102 (in print).Google Scholar
Ruyter-Spira, C.P., Gu, Z.L., Van der Poel, J.J. and Groenen, M.A.M. (1997) Bulked segregant analysis using microsatellites: mapping of the dominant white locus in the chicken. Poultry Science 76: 386391.Google Scholar
Ruyter-Spira, C.P., De Groof, A.J.C., Van der Poel, J.J., Herbergs, J., Masabanda, J., Fries, R. and Groenen, M.A.M. (1998) The HMGI-C gene is a likely candidate for the autosomal dwarf locus in the chicken. Journal of Heredity 89: 295300.Google Scholar
Sazanov, A., Masabanda, J., Ewald, D., Takeuchi, S., Tixier-Boichard, M., Buitkamp, J. and Fries, R. (1998) Evolutionarily conserved telomeric location of BBCI and MCIR on a microchromosome questions the identity of MCIR and a pigmentation locus on chromosome 1 in chicken. Chromosome Research 6: 651654.Google Scholar
Sazanov, A.A., Trukhina, A.V., Smirnov, A.F. and Jaszczak, K. (2002) Two chicken genes APOAI and ETSI are physically assigned to the same microchromosome. Animal Genetics 33: 321322.Google Scholar
Schmid, M., Nanda, I., Guttenbach, M., Steinlein, C., Hoehn, M., Schartl, M., Haaf, T., Weigend, S., Fries, R., Buerstedde, J.-M., Wimmers, K., Burt, D.W., Smith, J., A'Hara, S., Law, A., Griffin, D.K., Bumstead, N., Kaufman, J., Thomson, P.A., Burke, T., Groenen, M.A.M., Crooijmans, R.P.M.A., Vignal, A., Fillon, V., Morisson, M., Pitel, F., Tixier-Boichard, M., Ladjali-Mohammedi, K., Hillel, J., Mäxi-Tanila, A., Cheng, H.H., Delany, M.E., Burnside, J. and Mizuno, S. (2000) First report on chicken genes and chromosomes 2000. CyroGenetics and Cell Genetics 90: 169218.Google Scholar
Serebrovsky, A.S. (1922) Crossing-over involving three sex-linked genes in chickens. American Naturalist 56: 571572.CrossRefGoogle Scholar
Serebrovsky, A.S. (1926) Studies on genetics of domestic fowl. In: Genetics of the Domestic Fowl: Memoirs of Anikowo Genetical Starion near Moscow (Ed. Koltzoff, N.K.), Commissariat of Agriculture, Novaia Derevnia, Moscow, Russia, pp. 374. (Abstracted in: DUNN, 1928, 1929).Google Scholar
Serebrovsky, A.S. and Petrov, S.G. (1928) A case of close autosomal linkage in the fowl. Journal of Heredity 19: 306306.Google Scholar
Serebrovsky, A.S. and Petrov, S.G. (1930) On the composition of the plan of the chromosomes of the domestic hen. Zhurnal experimental'noy biologii 6: 157180.Google Scholar
Serebrovsky, A.S. and Wassina, E.T. (1927) On the topography of the sex-chromosome in fowls. Journal of Genetics 17: 211216.Google Scholar
Shibusawa, M., Nishida-Umehara, C., Masabanda, J., Griffin, D.K., Isobe, T. and Matsuda, Y. (2002) Chromosome rearrangements between chicken and guinea fowl defined by comparative chromosome painting and FISH mapping of DNA clones. Cyrogenetic and Genome Research 98: 225230.Google Scholar
Smith, E.,Shi, L., Drummond, P., Rodriguez, L., Hamilton, R., Powell, E., Nahashon, S., Ramlal, S., Smith, G. and Foster, J. (2000) Development and characterisation of expressed sequence tags for the turkey (Meleagris gallopavo) genome and comparative sequence analysis with other birds. Animal Genetics 31: 6267.Google Scholar
Smith, E.J., Shi, L., Drummond, P., Rodriguez, L., Hamilton, R., Ramlal, S., Smith, G., Pierce, K. and Foster, J. (2001a) Expressed sequence tags for the chicken genome from a normalized 10-day-old White Leghorn whole embryo cDNA library: I. DNA sequence characterisation and linkage analysis. Journal of Heredity 92: 18.Google Scholar
Smith, E.J., Shi, L., Prevost, L., Drummond, P., Ramlal, S., Smith, G., Pierce, K. and Foster, J. (2001b) Expressed sequence tags for the chicken genome from a normalized, ten-day-old white leghorn whole embryo cDNA library. 2. Comparative DNA sequence analysis of guinea fowl, quail, and turkey genomes. Poultry Science 80: 12631272.Google Scholar
Smith, J., Bruley, C.K., Paton, I.R., Dunn, I., Jones, C.T., Windsor, D., Morrice, D.R., Law, A.S., Masabanda, J., Sazanov, A., Waddington, D., Fries, R. and Burt, D.W. (2000) Differences in gene density on chicken macrochromosomes and microchromosomes. Animal Genetics 31: 96103.Google Scholar
Somes, R.G. Jr. (1973) Linkage relationships in domestic fowl. Journal of Heredity 64: 217221.Google Scholar
Somes, R.G. Jr. (1978) New linkage groups and revised chromosome map of the domestic fowl. Journal of Heredity 69: 401403.Google Scholar
SomesR.G., JR. R.G., JR. (1987) Linked loci of the chicken – Gallus gallus (G. domesticus). In: Generic Maps (Ed. Obrien, S.), 4th edn, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, pp. 422429.Google Scholar
Somes, R.G. Jr. (1992) Identifying the ptilopody (feathered shank) loci of the chicken. Journal of Heredity 83: 230234.CrossRefGoogle ScholarPubMed
Spillman, W.J. (1908) Spurious allelomorphism: results of some recent investigations. American Naturalist 42: 610615.Google Scholar
Spillman, W.J. (1909) Barring in Barred Plymouth Rocks. Poultry 5: 7.Google Scholar
Stevens, L. (1986) Gene structure and organisation in the domestic fowl (Gallus domesticus). World Poultry Science Journal 42: 232242.Google Scholar
Sturtevant, A.H. (1911) Another sex-limited character in fowls. Science 33: 337338.Google Scholar
Sturtevant, A.H. (1912) An experiment dealing with sex-linkage in fowls. Journal of Experimental Zoology 12: 499518.Google Scholar
Suchyta, S.P., Cheng, H.H., Burnside, J. and Dodgson, J.B. (2001) Comparative mapping of chicken anchor loci orthologous to genes on human chromosomes 1,4 and 9. Animal Genetics 32: 1218.Google Scholar
Sungurov, A.N. (1933) On the plan of the fowl chromosomes. Biologicheskiy zhurnal 2: 196201.Google Scholar
Suttle, A.D. and Sipe, G.R. (1932) Linkage of genes for crest and frizzle. Journal of Heredity 23: 135142.Google Scholar
Sutton, W.S. (1903) The chromosomes in heredity. Biological Bulletin 4: 231251.Google Scholar
Suzuki, T., Kurosaki, T., Shimada, K., Kansaku, N., Kuhnlein, U., Zadworny, D., Agata, K., Hashimoto, A., Koide, M., Koike, M., Takata, M., Kuroiwa, A., Minai, S., Namikawa, T. and Matsuda, Y. (1999) Cytogenetic mapping of 31 functional genes on chicken chromosomes by direct R-banding FISH. Cytogenetics and Cell Genetics 87: 3240.Google Scholar
Tatsuda, K. and Fujinaka, K. (2001) Genetic mapping of QTL affecting body weight in chickens using a F2 family. British Poultry Science 42: 333337.Google Scholar
Toye, A.A., Schalkwyk, L., Lehrach, H. and Bumstead, N. (1997) A yeast artificial chromosome (YAC) library containing 10 haploid chicken genome equivalents. Mammalian Genome 8: 274276.Google Scholar
Tuiskula-Haavisto, M., Honkatukia, M., Vikki, J., De Konig, D., Schulman, N. and Mäki-Tanila, A. (2002) Mapping of quantitative trait loci affecting quality and production traits in eggs layers. Poultry Science 81: 919927.Google Scholar
Vallejo, R.L., Bacon, L.D., Liu, H.C., Witter, R.L., Groenen, M.A.M., Hillel, J. and Cheng, H.H. (1998) Genetic mapping of quantitative trait loci affecting susceptibility to Market's disease virus induced tumors in F2 intercross chickens. Genetics 148: 349360.Google Scholar
Van Kaam, J.B.C.H.M., Van Arendonk, J.A.M., Groenen, M.A.M., Bovenhuis, H., Vereijken, A.L.J., Crooijmans, R.P.M.A., Van Der Poel, J.J. and Veenendall, A. (1998) Whole genome scan in chickens for quantitative trait loci affecting body weight in chickens using a three generation design. Livestock Production Science 54: 133150.Google Scholar
Van Kaam, J.B.C.H.M., Groenen, M.A.M., Bovenhuis, H., Veenendaal, A., Verewken, A.L.J. and Van Arendonk, J.A.M. (1999a) Whole genome scan in chickens for quantitative trait loci affecting growth and feed efficiency. Poultry Science 78: 1523.Google Scholar
Van Kaam, J.B.C.H.M., Groenen, M.A.M., Bovenhuis, H., Veenendaal, A., Vereijken, A.L.J. and Van Arendonk, J.A.M. (1999b) Whole genome scan in chickens for quantitative trait loci affecting carcass traits. Poultry Science 78: 10911099.Google Scholar
Waddington, D., Springbett, A.J. and Burt, D.W. (2000) A chromosome-based model for estimating the number of conserved segments between pairs of species from comparative genetic maps. Genetics 154: 323332.Google Scholar
Wardecka, B., Olszewski, R., Jaszczak, K., Zieba, C., Pierzchala, M. and Wicinska, K. (2002) Relationship between microsatellite marker alleles on chromosome 1–5 originating from the Rhode Island Red and Green-legged Partrigenous breeds and egg production and quality traits in F2 mapping population. Journal of Applied Genetics 43: 319329.Google Scholar
Warren, D.C. (1928) Sex-linked characters of poultry. Genetics 13: 421433.Google Scholar
Warren, D.C. (1935) A new linkage group in the fowl (Gallus domesticus). American Naturalist 69: 82.Google Scholar
Warren, D.C. (1949) Linkage relations of autosomal factors in the fowl. Genetics 34: 333350.Google Scholar
Warren, D.C. and Hutt, F.B. (1936) Linkage relations of crest, dominant white and frizzling in the fowl. American Naturalist 70: 379394.Google Scholar
Xu, G. and Goodridge, A.G. (1998) A CT repeat in the promoter of the chicken malic enzyme gene is essential for function at an alternative transcription start site. Archives of Biochemistry and Biophysics 358: 8391.Google Scholar
Yamashina, Y. (1944) Karyotype studies in birds. I. Comparative morphology of chromosomes in seventeen races of domestic fowl. Cyrologia 13: 270296.Google Scholar
Yonash, N., Bacon, L.D., Witter, R.L. and Cheng, H.H. (1999) High resolution mapping and identification of new quantitative trait loci (QTL) affecting susceptibility to Marek's disease. Animal Genetics 30: 126135.Google Scholar
Zimmer, R. and Verrinder Gibbins, A.M. (1997) Construction and characterisation of a large-fragment chicken bacterial artificial chromosome library. Genomics 42: 217226.Google Scholar
Zimmer, R., King, W.A. and Verrinder Gibbins, A.M. (1997) Generation of chicken Z-chromosome painting probes by microdissection for screening large-insert genomic libraries. CyroGenetics and Cell Genetics 78: 124130.Google Scholar