Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T09:27:17.877Z Has data issue: false hasContentIssue false

Genetic Variations in Nutrient Requirements

Published online by Cambridge University Press:  18 September 2007

M. C. Nesheirn
Affiliation:
Department of Poultry Science, Cornell University, Ithaca, New York
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hutt, F. B., 1961. Genetic variation in the utilization of riboflavin, thiamine, and other nutrients. Ann. N. Y. Acad. Sci. 91, Art. 3:659.CrossRefGoogle Scholar
2.Hutt, F. B., 1961. Nutrition and genes in the domestic fowl. Nutrition Rev. 19:225.CrossRefGoogle ScholarPubMed
3.Olsen, E. M., Hill, D. C. and Branion, H. D., 1964. Utilization of vitamin A and carotene by different breeds and strains of chickens. Poultry Sci. 43:1488.Google Scholar
4.Howes, C. E. and Hutt, F. B., 1952. Breed resistance to nutritional encephalomalacia in the fowl. Poultry Sci. 31:360.CrossRefGoogle Scholar
5.Scrimshaw, N. S., Hutt, F. B., Scrimshaw, M. W. and Sullivan, C. R., 1945. The effect of genetic variation in the fowl on the thiamine content of the egg. J. Nutrition 30:375.Google Scholar
6.Mayfield, H. L., Roehm, R. R. and Beeckler, A. F., 1955. Riboflavin and thiamine content of eggs from New Hampshire and White Leghorn hens fed diets containing condensed fish or dried whale solubles. Poultry Sci. 34:1106.CrossRefGoogle Scholar
7.Howes, C. E. and Hutt, F. B., 1956. Genetic variation in efficiency of thiamine utilization by the domestic fowl. Poultry Sci. 35:1223.CrossRefGoogle Scholar
8.Tornton, P. A., 1960. Thiamine requirement of growing chicks as influenced by breed differences. Poultry Sci. 39:440.CrossRefGoogle Scholar
9.Lamoreux, W. F. and Hutt, F. B., 1948. Genetic resistance to deficiency of riboflavin in the chick. Poultry Sci. 27:334.CrossRefGoogle Scholar
10.Bauernfeind, J. C., Norris, L. C., and Heuser, G. F., 1942. The pantothenic acid requirement of chicks. Poultry Sci. 21:142.CrossRefGoogle Scholar
11.Lucas, H. L., Heuser, G. F., and Norris, L. C., 1946. An unexpected high requirement of chicks for pyridoxine. Poultry Sci. 25:137.CrossRefGoogle Scholar
12.Daghir, N. J. and Balloun, S. L., 1963. Evaluation of the effect of breed on vitamin B6 requirement of chicks. J. Nutrition 79:279.CrossRefGoogle ScholarPubMed
13.Maw, A. J. G., 1954. Inherited riboflavin deficiency in chicken eggs. Poultry Sci. 33:216 (research note).CrossRefGoogle Scholar
14.Boucher, R. V., Buss, E. G., and Maw, A. J. G., 1959. Physiological characteristics associated with a mutant gene in chickens that causes a deficiency of riboflavin. 2. Blood. Poultry Sci. 38:1190 (abstract).Google Scholar
15.Buss, E. G., Boucher, R. V., and Maw, A. J. G., 1959. Physiological characteristics associated with a mutant gene in chickens that causes a deficiency of riboflavin. 1. Eggs and embryos. Poultry Sci. 38:1192 (abstract).Google Scholar
16.McDonald, M. W., 1957. Methionine supplements in chicken diets. II. A breed difference in growth response to DL-methionine. Australian J. Agric. Res. 8:587.CrossRefGoogle Scholar
17.McDonald, M. W., 1958. Methionine supplements in chicken diets. III. The biochemical differences in sulphur amino acid metabolism between White Leghorns and Australorps. Australian J. Agric. Res. 9:161.CrossRefGoogle Scholar
18.Miller, E. C., O'Barr, J. S., and Denton, C. A., 1960. The metabolism of methionine by Single Comb White Leghorn and Black Australorp chicks. J. Nutrition 70:42.CrossRefGoogle Scholar
19.Wallace, H. W., Moldave, K., and Meister, A., 1957. Studies on conversion of phenylalanine to tyrosine in phenylpyruvic oligophrenia. Proc. Soc. Exp. Biol. Med. 94:632.Google Scholar
20.Knox, W. E., 1958. Sir Archibald Garrod's in born errors of metabolism. I. Cystinuria. Am J., Human Genetics 10:3.Google Scholar
21.Harms, R. H., and Waldroup, P. W., 1962. Strain differences in the protein requirement of laying hens. Poultry Sci. 41:1985.Google Scholar
22.Sibbald, I. R. and Slinger, S. J., 1963. The effects of breed, sex and arsenical and nutrient density on the Utilization of dietary energy. Poultry Sci. 42:1325.CrossRefGoogle Scholar
23.Davidson, I. and Mathieson, J., 1965. Observations on the utilisation of dietary energy by medium-and fast-growing strains of cockerels and on their arginine and methioline requirements. British Poultry Sci. 6:225.CrossRefGoogle ScholarPubMed
24.Mitchell, H. H. and Beadles, J. R., 1952. The determination of the protein requirement of the rat for maximum growth under conditions of restricted consumption of food. J. Nutrition. 47:133.CrossRefGoogle ScholarPubMed
25.Griminger, P. and Scott, H. M., 1959. Growth rate and lysine requirement of the chick. J. Nutrition 68:429.Google Scholar
26.Almquist, H. I., 1947. Evaluation of amino acid requirements by observations on the chick (Editorial Review). J. Nutrition 34:543.CrossRefGoogle Scholar
27.Dean, W. F and Scott, H. M., 1962. The development of an amino acid standard for the early growth of chicks. Poultry Sci. 41:1640 (abstract).Google Scholar
28.Becker, D. E., Ullrey, D. E., and Terrill, S. W., 1954. Protein and amino acid intakes for optimum growth rate in the young pig. J. An. Sci. 13:346.CrossRefGoogle Scholar
29.Kondra, P. A. and Hodgson, G. C., 1961. Genetic difference in energy-protein requirements of chicks. Poultry Sci. 40:525.Google Scholar
30.Heywang, B. W. and Vavich, M. G., 1965. Energy level of a sixteen percent protein diet for layers in a semiarid subtropical climate. Poultry Sci. 41:1389.Google Scholar
31.Sherwood, D. H., Caskey, C. D., Krautmann, B. A., Vanwormer, M. C., Smith, S. B., and Ward, R. E., 1964. Management and feeding of meat-type breeder chickens. Poultry Sci. 43:1272.Google Scholar
32.Hess, C. W., Edwards, H. M. Jr., and Dembnicki, E. F., 1962. Growth rate selection on a methionine deficient diet. Poultry Sci. 41:1042.Google Scholar
33.Lepore, P. D., 1965. Methionine and protein requirements of lines of chickens established by growth-rate selection on a methionine deficient diet. Poultry Sci. 44:797.CrossRefGoogle ScholarPubMed
34.Griminger, P. and Fisher, H., 1962. Genetic differences in growth potential on amino acid deficient diets. Proc. Soc. Exp. Biol. Med. 111:754.CrossRefGoogle ScholarPubMed
35.Enos, H. L. and Moreng, R. E., 1965. Evidence of genetic variability for lysine utilization. Poultry Sci. 44:971.CrossRefGoogle Scholar
36.Kennedy, G. H., Marvel, J. P., Waddell, J., Titus, H. W., and Mehring, A. L. Jr., 1953. The assay of vitamin D Using a strain of chickens selected for their uniformity of response. Poultry Sci. 32:29.CrossRefGoogle Scholar
37.Nesheim, M. C. and Hutt, F. B., 1962. Genetic differences among White Leghorn chicks in requirement of arginine. Science 137:691.CrossRefGoogle ScholarPubMed
38.Hutt, F. B. and Nesheim, M. C., Changing the chick's requirement of arginine by selection. (In press).Google Scholar
39.Leach, R. M. Jr. and Nesheim, M. C., 1965. Nutritional genetic and morphological studies of an abnormal cartilage formation in young chicks. J. Nutrition 86:236.CrossRefGoogle ScholarPubMed