Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T19:44:44.123Z Has data issue: false hasContentIssue false

Glutathione peroxidases in poultry biology: Part 2. Modulation of enzymatic activities

Published online by Cambridge University Press:  19 March 2018

P.F. SURAI*
Affiliation:
Trakia University, Stara Zagora, Bulgaria Moscow State Academy of Veterinary Medicine and Biotechnologynamed after K.I. Skryabin, Moscow, Russia Szent Istvan University, Godollo, Hungary Sumy National Agrarian University, Sumy, Ukraine Odessa National Academy of Food Technologies, Ukraine
I.I. KOCHISH
Affiliation:
Moscow State Academy of Veterinary Medicine and Biotechnologynamed after K.I. Skryabin, Moscow, Russia
V.I. FISININ
Affiliation:
All Russian Institute of Poultry Husbandry, Sergiev Posad, Russia
*
Corresponding author: psurai@feedfood.co.uk
Get access

Abstract

It is known that glutathione peroxidase (GSH-Px) belongs to the first and second levels of the antioxidant network and is involved in the regulation of many important cellular pathways including maintenance of the redox balance and signalling. In poultry the GSH-Px family includes four Se-dependent forms of the enzyme, however only GSH-Px1 and GSH-Px4 are well characterised and have received substantial attention as important enzymes participating in chicken adaptation to commercially-relevant stresses. The aim of this review is to analyse the current data on relationships between various stress conditions and the GSH-Px activity in poultry with special emphasis to selenium status and nutritional supplements. Indeed, the published literature indicates that there is a range of different nutritional (Se supplementation, antioxidants, plant extracts, probiotics, drugs, mycotoxins) and environmental (temperature stress, transportation, disease) factors modulating GSH-Px activity and/or expression in different tissues from poultry. These inducible enzymes are involved in adaptation to stress and Se supplementation in optimal concentrations whereby form is key for antioxidant system maintenance under stress conditions in commercial poultry production.

Type
Review
Copyright
Copyright © World's Poultry Science Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AENGWANICH, W. and SUTTAJIT, M. (2013) Effect of polyphenols extracted from tamarind (Tamarindus indica L.) seed coat on pathophysiological changes and red blood cell glutathione peroxidase activity in heat-stressed broilers. International Journal of Biometeorology 57: 137-143.CrossRefGoogle ScholarPubMed
AKBARIAN, A., MICHIELS, J., GOLIAN, A., BUYSE, J., WANG, Y. and DE SMET, S. (2014) Gene expression of heat shock protein 70 and antioxidant enzymes, oxidative status, and meat oxidative stability of cyclically heat-challenged finishing broilers fed Origanum compactum and Curcuma xanthorrhiza essential oils. Poultry Science 93: 1930-1941.CrossRefGoogle ScholarPubMed
AKBARIAN, A., GOLIAN, A., KERMANSHAHI, H., DE SMET, S. and MICHIELS, J. (2015) Antioxidant enzyme activities, plasma hormone levels and serum metabolites of finishing broiler chickens reared under high ambient temperature and fed lemon and orange peel extracts and Curcuma xanthorrhiza essential oil. Journal of Animal Physiology and Animal Nutrition 99: 150-162.CrossRefGoogle ScholarPubMed
ANCSIN, Z., ERDELYI, M., BALOGH, K., SZABO-FODOR, J. and MEZES, M. (2013) Effect of garlic oil supplementation on the glutathione redox system of broiler chickens fed with T-2 toxin contaminated feed. World Mycotoxin Journal 6: 73-81.CrossRefGoogle Scholar
ALUWONG, T., KAWU, M., RAJI, M., DZENDA, T., GOVWANG, F., SINKALU, V. and AYO, J. (2013) Effect of Yeast Probiotic on Growth, Antioxidant Enzyme Activities and Malondialdehyde Concentration of Broiler Chickens. Antioxidants 2: 326-339.CrossRefGoogle ScholarPubMed
BAI, K., HUANG, Q., ZHANG, J., HE, J., ZHANG, L. and WANG, T. (2017) Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poultry Science 96: 74-82.CrossRefGoogle ScholarPubMed
BALOGH, K., WEBER, M., ERDÉLYI, M. and MÉZES, M. (2004) Effect of excess selenium supplementation on the glutathione redox system in broiler chicken. Acta Veterinaria Hungarica 52: 403-411.CrossRefGoogle ScholarPubMed
BÓCSAI, A., PELYHE, C., ZÁNDOKI, E., ANCSIN, Z., SZABÓ-FODOR, J., ERDÉLYI, M., MÉZES, M. and BALOGH, K. (2016) Short-term effects of T-2 toxin exposure on some lipid peroxide and glutathione redox parameters of broiler chickens. Journal of Animal Physiology and Animal Nutrition 100: 520-525.CrossRefGoogle ScholarPubMed
BUN, S.D., GUO, Y.M., GUO, F.C., JI, F.J. and CAO, H. (2011) Influence of organic zinc supplementation on the antioxidant status and immune responses of broilers challenged with Eimeria tenella. Poultry Science 90: 1220-1226.CrossRefGoogle ScholarPubMed
CHEN, P., MA, Q.G., JI, C., ZHANG, J.Y., ZHAO, L.H., ZHANG, Y. and JIE, Y.Z. (2011) Dietary lipoic acid influences antioxidant capability and oxidative status of broilers. International Journal of Molecular Sciences 12: 8476-8488.CrossRefGoogle ScholarPubMed
CHEN, G., WU, J. and LI, C. (2014) Effect of different selenium sources on production performance and biochemical parameters of broilers. Journal of Animal Physiology and Animal Nutrition 98: 747-754.CrossRefGoogle ScholarPubMed
CINAR, M., YILDIRIM, E., YIGIT, A.A., YALCINKAYA, I., DURU, O., KISA, U. and ATMACA, N. (2014) Effects of dietary supplementation with vitamin C and vitamin E and their combination on growth performance, some biochemical parameters, and oxidative stress induced by copper toxicity in broilers. Biological Trace Element Research 158: 186-196.CrossRefGoogle ScholarPubMed
DELEZIE, E., ROVERS, M., VAN DER AA, A., RUTTENS, A., WITTOCX, S. and SEGERS, L. (2014) Comparing responses to different selenium sources and dosages in laying hens. Poultry Science 93: 3083-3090.CrossRefGoogle ScholarPubMed
DONG, X.F., GAO, W.W., SU, J.L., TONG, J.M. and ZHANG, Q. (2011) Effects of dietary polysavone (Alfalfa extract) and chlortetracycline supplementation on antioxidation and meat quality in broiler chickens. British Poultry Science 52: 302-309.CrossRefGoogle ScholarPubMed
DVORSKA, J.E., PAPPAS, A.C., KARADAS, F., SPEAKE, B.K. and SURAI, P.F. (2007) Protective effect of modified glucomannans and organic selenium against antioxidant depletion in the chicken liver due to T-2 toxin-contaminated feed consumption. Comparative Biochemistry and Physiology. C Toxicology and Pharmacology 145: 582-587.CrossRefGoogle ScholarPubMed
FLOHE, L. and BRIGELIUS-FLOHE, R. (2016) Basics and news on glutathione peroxidases, in: HATFIELD, D.L., SCHWEIZER, U., TSUI, P.A. & GLADYSHEV, V.N. (Eds) Selenium. Its molecular biology and role in human health, pp. 211-222 (Fourth Edition, Springer, New York).Google Scholar
GABRASHANSKA, M., GALVEZ-MORROS, M., TEODOROVA, S.E., ERMIDOU-POLLET, S. and POLLET, S. (2007) Effect of selenium and Ascaridia galli infection on antioxidant biomarkers in broiler chickens: a mathematical model for parasite reduction and host growth. Journal of Helminthology 81: 399-408.CrossRefGoogle ScholarPubMed
GAO, Y.Y., XIE, Q.M., MA, J.Y., ZHANG, X.B., ZHU, J.M., SHU, D.M., SUN, B.L., JIN, L. and BI, Y.Z. (2013) Supplementation of xanthophylls increased antioxidant capacity and decreased lipid peroxidation in hens and chicks. British Journal of Nutrition 109: 977-983.CrossRefGoogle ScholarPubMed
GHAZI HARSINI, S., HABIBIYAN, M., MOEINI, M.M. and ABDOLMOHAMMADI, A.R. (2012) Effects of dietary selenium, vitamin E, and their combination on growth, serum metabolites, and antioxidant defense system in skeletal muscle of broilers under heat stress. Biological Trace Element Research 148: 322-330.CrossRefGoogle ScholarPubMed
GREŠÁKOVÁ, L., BOŘUTOVÁ, R., FAIX, S., PLACHÁ, I., COBANOVÁ, K., KOŠÍKOVÁ, B. and LENG, L. (2012) Effect of lignin on oxidative stress in chickens fed a diet contaminated with zearalenone. Acta Veterinaria Hungarica 60: 103-114.CrossRefGoogle ScholarPubMed
HASSANPOUR, H., KHALAJI-PIRBALOUTY, V., NASIRI, L., MOHEBBI, A. and BAHADORAN, S. (2015) Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension. International Journal of Biometeorology 59: 1615-1621.CrossRefGoogle ScholarPubMed
HOSSEINI-VASHAN, S.J., GOLIAN, A. and YAGHOBFAR, A. (2016) Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace. International Journal of Biometeorology 60: 1183-1192.CrossRefGoogle ScholarPubMed
HU, Z.P., WANG, T., AHMAD, H., ZHANG, J.F., ZHANG, L.L. and ZHONG, X. (2015) Effects of different formulations of α-tocopherol acetate (vitamin E) on growth performance, meat quality and antioxidant capacity in broiler chickens. British Poultry Science 56: 687-695.CrossRefGoogle ScholarPubMed
HUANG, J.Q., REN, F.Z., JIANG, Y.Y., XIAO, C. and LEI, X.G. (2015) Selenoproteins protect against avian nutritional muscular dystrophy by metabolizing peroxides and regulating redox/apoptotic signalling. Free Radical Biology and Medicine 83: 129-138.CrossRefGoogle Scholar
HUANG, C., JIAO, H., SONG, Z., ZHAO, J., WANG, X. and LIN, H. (2015a) Heat stress impairs mitochondria functions and induces oxidative injury in broiler chickens. Journal of Animal Science 93: 2144-2153.CrossRefGoogle ScholarPubMed
IQBAL, M., CAWTHON, D., BEERS, K., WIDEMAN, R.F. (Jr) and BOTTJE, W.G. (2002) Antioxidant enzyme activities and mitochondrial fatty acids in pulmonary hypertension syndrome (PHS) in broilers. Poultry Science 81: 252-260.CrossRefGoogle ScholarPubMed
JAYASREE, U., REDDY, A.G., REDDY, K.S., ANJANEYULU, Y. and KALAKUMAR, B. (2003) Evaluation of vitamin E against deltamethrin toxicity in broiler chicks. Indian Journal of Physiology and Pharmacology 47: 447-452.Google Scholar
JIANG, X.Q., CAO, C.Y., LI, Z.Y., LI, W., ZHANG, C., LIN, J., LI, X.N. and LI, J.L. (2017) Delineating hierarchy of selenotranscriptome expression and their response to selenium status in chicken central nervous system. Journal of Inorganic Biochemistry 169: 13-22.CrossRefGoogle ScholarPubMed
JING, C.L., DONG, X.F., WANG, Z.M., LIU, S. and TONG, J.M. (2015) Comparative study of DL-selenomethionine vs sodium selenite and seleno-yeast on antioxidant activity and selenium status in laying hens. Poultry Science 94: 965-975.CrossRefGoogle ScholarPubMed
KAMASHI, K., REDDY, A.G., REDDY, K.S. and REDDY, V.R. (2004) Evaluation of zinc against salinomycin toxicity in broilers. Indian Journal of Physiology and Pharmacology 48: 89-95.Google ScholarPubMed
KE, Y.Y., LIU, W.J., WANG, Z.X. and CHEN, Y.X. (2011) Effects of monochromatic light on quality properties and antioxidation of meat in broilers. Poultry Science 90: 2632-2637.CrossRefGoogle ScholarPubMed
LEAL, M., SHIMADA, A., RUÍZ, F. and GONZÁLEZ DE MEJÍA, E. (1999) Effect of lycopene on lipid peroxidation and glutathione-dependent enzymes induced by T-2 toxin in vivo. Toxicology Letters 109:1-10.CrossRefGoogle ScholarPubMed
LI, J.L. and SUNDE, R.A. (2016) Selenoprotein Transcript Level and Enzyme Activity as Biomarkers for Selenium Status and Selenium Requirements of Chickens (Gallus gallus). PLoS One 11 (4): e0152392.CrossRefGoogle ScholarPubMed
LIN, S.L., WANG, C.W., TAN, S.R., LIANG, Y., YAO, H.D., ZHANG, Z.W. and XU, SW. (2014) Selenium deficiency inhibits the conversion of thyroidal thyroxine (T4) to triiodothyronine (T3) in chicken thyroids. Biological Trace Element Research 161: 263-271.CrossRefGoogle ScholarPubMed
LIN, H., HUANG, Q., GUO, X., LIU, P., LIU, W., ZOU, Y., ZHU, S., DENG, G., KUANG, J., ZHANG, C., CAO, H. and HU, G. (2015) Elevated level of renal xanthine oxidase mRNA transcription after nephropathogenic infectious bronchitis virus infection in growing layers. Journal of Veterinary Science 16: 423-429.CrossRefGoogle ScholarPubMed
LIU, C.P., FU, J., XU, F.P., WANG, X.S. and LI, S. (2015) The role of heat shock proteins in oxidative stress damage induced by Se deficiency in chicken livers. Biometals 28: 163-173.CrossRefGoogle ScholarPubMed
LIU, Z., QU, Y., WANG, J. and WU, R. (2016a) Selenium Deficiency Attenuates Chicken Duodenal Mucosal Immunity via Activation of the NF-κB Signaling Pathway. Biological Trace Element Research 172: 465-473.CrossRefGoogle ScholarPubMed
LIU, T., MA, Q., ZHAO, L., JIA, R., ZHANG, J., JI, C. and WANG, X. (2016b) Protective Effects of Sporoderm-Broken Spores of Ganderma lucidum on Growth Performance, Antioxidant Capacity and Immune Function of Broiler Chickens Exposed to Low Level of Aflatoxin B1. Toxins 8 (10): pii: E278. doi: 10.3390/toxins8100278.CrossRefGoogle ScholarPubMed
MAHMOUD, K.Z. and HIJAZI, A.A. (2007) Effect of vitamin A and/or E on plasma enzymatic antioxidant systems and total antioxidant capacity of broiler chickens challenged with carbon tetrachloride. Journal of Animal Physiology and Animal Nutrition 91: 333-340.CrossRefGoogle ScholarPubMed
MARCHIONATTI, A.M., PEREZ, A.V., DIAZ DE BARBOZA, G.E., PEREIRA, B.M. and TOLOSA DE TALAMONI, N.G. (2008) Mitochondrial dysfunction is responsible for the intestinal calcium absorption inhibition induced by menadione. Biochimica et Biophysica Acta 1780: 101-107.CrossRefGoogle ScholarPubMed
MÉZES, M. and SÁLYI, G. (1994) Effect of acute selenium toxicosis on the lipid peroxide status and the glutathione system of broiler chickens. Acta Veterinaria Hungarica 42: 459-463.Google ScholarPubMed
MÉZES, M., SÁLYI, G., BÁNHIDI, G. and SZEBERÉNYI, S. (1992) Effect of acute salinomycin-tiamulin toxicity on the lipid peroxide and antioxidant status of broiler chicken. Acta Veterinaria Hungarica 40: 251-257.Google ScholarPubMed
MILINKOVIĆ-TUR, S., STOJEVIĆ, Z., PIRSLJIN, J., ZDELAR-TUK, M., POLJICAK-MILAS, N., LJUBIĆ, B.B. and GRADINSKI-VRBANAC, B. (2007) Effects of fasting and refeeding on the antioxidant system in cockerels and pullets. Acta Veterinaria Hungarica 55: 181-189.CrossRefGoogle ScholarPubMed
NAZIROGLU, M., SAHIN, K., SIMSEK, H., AYDILEK, N. and ERTAS, O.N. (2000) The effects of food withdrawal and darkening on lipid peroxidation of laying hens in high ambient temperatures. Deutsche Tierarztliche Wochenschrift 107: 199-202.Google ScholarPubMed
OZTÜRK-UREK, R., BOZKAYA, L.A. and TARHAN, L. (2001) The effects of some antioxidant vitamin- and trace element-supplemented diets on activities of SOD, CAT, GSH-Px and LPO levels in chicken tissues. Cell Biochemistry and Function. 19: 125-132.CrossRefGoogle ScholarPubMed
PAYNE, R.L. and SOUTHERN, L.L. (2005) Changes in glutathione peroxidase and tissue selenium concentrations of broilers after consuming a diet adequate in selenium. Poultry Science 84: 1268-1276.CrossRefGoogle ScholarPubMed
PAYNE, R.L. and SOUTHERN, LL. (2005a) Comparison of inorganic and organic selenium sources for broilers. Poultry Science 84: 898-902.CrossRefGoogle ScholarPubMed
PENG, X., CUI, H., HE, Y., CUI, W., FANG, J., ZUO, Z., DENG, J., PAN, K., ZHOU, Y. and LAI, W. (2012) Excess dietary sodium selenite alters apoptotic population and oxidative stress markers of spleens in broilers. Biological Trace Element Research 145: 47-51.CrossRefGoogle ScholarPubMed
PENG, Y.Z., WANG, Y.W., NING, D. and GUO, Y.M. (2013) Changes of haematic parameters, redox status and mitochondrial complex activity in the heart and liver of broilers fed with different density diets under low ambient temperature. Avian Pathology 42: 327-334.CrossRefGoogle ScholarPubMed
PERAI, A.H., KERMANSHAHI, H., MOGHADDAM, H.N. and ZARBAN, A. (2015) Effects of chromium and chromium+vitamin C combination on metabolic, oxidative, and fear responses of broilers transported under summer conditions. International Journal of Biometeorology 59: 453-462.CrossRefGoogle ScholarPubMed
PETROVIC, V., MARCINCAK, S., POPELKA, P., SIMKOVA, J., MARTONOVA, M., BULECA, J., MARCINCAKOVA, D., TUCKOVA, M., MOLNAR, L. and KOVAC, G. (2012) The effect of supplementation of clove and agrimony or clove and lemon balm on growth performance, antioxidant status and selected indices of lipid profile of broiler chickens. Journal of Animal Physiology and Animal Nutrition 96: 970-977.CrossRefGoogle ScholarPubMed
PLACHA, I., BORUTOVA, R., GRESAKOVA, L., PETROVIC, V., FAIX, S. and LENG, L. (2009) Effects of excessive selenium supplementation to diet contaminated with deoxynivalenol on blood phagocytic activity and antioxidative status of broilers. Journal of Animal Physiology and Animal Nutrition 93: 695-702.CrossRefGoogle ScholarPubMed
PLACHA, I., TAKACOVA, J., RYZNER, M., COBANOVA, K., LAUKOVA, A., STROMPFOVA, V., VENGLOVSKA, K. and FAIX, S. (2014) Effect of thyme essential oil and selenium on intestine integrity and antioxidant status of broilers. British Poultry Science 55: 105-114.CrossRefGoogle ScholarPubMed
QIN, T., YIN, Y., YU, Q. and YANG, Q. (2015) Bursopentin (BP5) protects dendritic cells from lipopolysaccharide-induced oxidative stress for immunosuppression. PLoS One 10 (2): e0117477.CrossRefGoogle ScholarPubMed
RAJASHREE, K., MUTHUKUMAR, T. and KARTHIKEYAN, N. (2014) Comparative study of the effects of organic selenium on hen performance and productivity of broiler breeders. British Poultry Science 55: 367-374.CrossRefGoogle ScholarPubMed
RAMNATH, V. and REKHA, P.S. (2009) Brahma Rasayana enhances in vivo antioxidant status in cold-stressed chickens (Gallus gallus domesticus). Indian Journal of Pharmacology 41: 115-119.CrossRefGoogle ScholarPubMed
RAO, S.V., PRAKASH, B., KUMARI, K., RAJU, M.V. and PANDA, A.K. (2013) Effect of supplementing different concentrations of organic trace minerals on performance, antioxidant activity, and bone mineralization in Vanaraja chickens developed for free range farming. Tropical Animal Health and Production 45: 1447-1451.CrossRefGoogle ScholarPubMed
SAHIN, K., ORHAN, C., TUZCU, M., SAHIN, N., HAYIRLI, A., BILGILI, S. and KUCUK, O. (2016) Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers. Poultry Science 95: 1088-1095.CrossRefGoogle ScholarPubMed
SÁLYI, G., MÉZES, M. and BÁNHIDI, G. (1990) Changes in the lipid peroxide status of broiler chickens in acute monensin poisoning. Acta Veterinaria Hungarica 38: 263-270.Google ScholarPubMed
SHEN, X., YI, D., NI, X., ZENG, D., JING, B., LEI, M., BIAN, Z., ZENG, Y., LI, T. and XIN, J. (2014) Effects of Lactobacillus plantarum on production performance, immune characteristics, antioxidant status, and intestinal microflora of bursin-immunized broilers. Canadian Journal of Microbiology 60: 193-202.CrossRefGoogle ScholarPubMed
SUBBAIAH, K.C., RANIPRAMEELA, D., VISWESWARI, G., RAJENDRA, W. and LOKANATHA, V. (2011) Perturbations in the antioxidant metabolism during Newcastle disease virus (NDV) infection in chicken: protective role of vitamin E. Naturwissenschaften 98: 1019-1026.CrossRefGoogle ScholarPubMed
SUN, B., CHEN, C., WANG, W., MA, J., XIE, Q., GAO, Y., CHEN, F., ZHANG, X. and BI, Y. (2015) Effects of lycopene supplementation in both maternal and offspring diets on growth performance, antioxidant capacity and biochemical parameters in chicks. Journal of Animal Physiology and Animal Nutrition 99: 42-49.CrossRefGoogle ScholarPubMed
SUNDE, R.A. and HADLEY, K.B. (2010) Phospholipid hydroperoxide glutathione peroxidase (Gpx4) is highly regulated in male turkey poults and can be used to determine dietary selenium requirements. Experimental Biology and Medicine 235: 23-31.CrossRefGoogle ScholarPubMed
SURAI, P.F. (2002) Natural antioxidants in avian nutrition and reproduction. Nottingham, UK: Nottingham University Press.Google Scholar
SURAI, P.F. (2002a) Selenium in poultry nutrition: a new look at an old element. 1. Antioxidant properties, deficiency and toxicity. World's Poultry Science Journal 58: 333-347.CrossRefGoogle Scholar
SURAI, P.F. (2002b) Selenium in poultry nutrition: a new look at an old element. 2. Reproduction, egg and meat quality and practical applications. World's Poultry Science Journal 58: 431-450.CrossRefGoogle Scholar
SURAI, P.F. (2006) Selenium in Nutrition and Health. Nottingham University Press, Nottingham, UK.Google Scholar
SURAI, P.F. and FISININ, V.I. (2015) Antioxidant-prooxidant balance in the intestine: applications in chick placement and pig weaning. Journal of Veterinary Science and Medicine 3 (1): 16.Google Scholar
SURAI, P.F., KOSTJUK, I.A., WISHART, G., MACPHERSON, A., SPEAKE, B., NOBLE, R.C., IONOV, I.A. and KUTZ, E. (1998) . Effect of vitamin E and selenium of cockerel diets on glutathione peroxidase activity and lipid peroxidation susceptibility in sperm, testes and liver. Biological Trace Element Research 64: 119-132.CrossRefGoogle ScholarPubMed
SURAI, P.F., KUKLENKO, T.V., IONOV, I.A., NOBLE, R.C. and SPARKS, N.H. (2000) Effect of vitamin A on the antioxidant system of the chick during early postnatal development. British Poultry Science 41: 454-458.CrossRefGoogle ScholarPubMed
TAKEBE, G., YARIMIZU, J., SAITO, Y., HAYASHI, T., NAKAMURA, H., YODOI, J., NAGASAWA, S. and TAKAHASHI, K. (2002) A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. The Journal of Biological Chemistry 277: 41254-41258.CrossRefGoogle ScholarPubMed
TAN, G.Y., YANG, L., FU, Y.Q., FENG, J.H. and ZHANG, M.H. (2010) Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chickens. Poultry Science 89: 115-122.CrossRefGoogle ScholarPubMed
TANG, J., HUANG, X., WANG, L., LI, Q., XU, J., JIA, G., LIU, G., CHEN, X., SHANG, H. and ZHAO, H. (2016) Supranutritional dietary selenium depressed expression of selenoprotein genes in three immune organs of broilers. Animal Science Journal 88: 331-338.CrossRefGoogle ScholarPubMed
VOLJC, M., FRANKIC, T., LEVART, A., NEMEC, M. and SALOBIR, J. (2011) Evaluation of different vitamin E recommendations and bioactivity of α-tocopherol isomers in broiler nutrition by measuring oxidative stress in vivo and the oxidative stability of meat. Poultry Science 90: 1478-1488.CrossRefGoogle ScholarPubMed
WANG, Z.G., PAN, X.J., ZHANG, W.Q., PENG, Z.Q., ZHAO, R.Q. and ZHOU, G.H. (2010) Methionine and selenium yeast supplementation of the maternal diets affects antioxidant activity of breeding eggs. Poultry Science 89: 931-937.CrossRefGoogle ScholarPubMed
WANG, X.F., ZHU, X.D., LI, Y.J., LIU, Y., LI, J.L., GAO, F., ZHOU, G.H. and ZHANG, L. (2015) Effect of dietary creatine monohydrate supplementation on muscle lipid peroxidation and antioxidant capacity of transported broilers in summer. Poultry Science 94: 2797-2804.CrossRefGoogle ScholarPubMed
WEI, F.X., HU, X.F., SA, R.N., LIU, F.Z., LI, S.Y. and SUN, Q.Y. (2014) Antioxidant capacity and meat quality of broilers exposed to different ambient humidity and ammonia concentrations. Genetics and Molecular Research 13: 3117-3127.CrossRefGoogle ScholarPubMed
WU, Q.J., WANG, Y.Q. and QI, Y.X. (2016) The protective effect of procyanidin against LPS-induced acute gut injury by the regulations of oxidative state. Springerplus 5 (1):1645.CrossRefGoogle Scholar
XU, S.W., YAO, H.D., ZHANG, J., ZHANG, Z.W., WANG, J.T., ZHANG, J.L. and JIANG, Z.H. (2013) The oxidative damage and disbalance of calcium homeostasis in brain of chicken induced by selenium deficiency. Biological Trace Element Research 151: 225-233.CrossRefGoogle ScholarPubMed
XU, D., LI, W., HUANG, Y., HE, J. and TIAN, Y. (2014) The effect of selenium and polysaccharide of Atractylodes macrocephala Koidz. (PAMK) on immune response in chicken spleen under heat stress. Biological Trace Element Research 160: 232-237.CrossRefGoogle ScholarPubMed
XU, D. and TIAN, Y. (2015) Selenium and Polysaccharides of Atractylodes macrocephala Koidz Play Different Roles in Improving the Immune Response Induced by Heat Stress in Chickens. Biological Trace Element Research 168: 235-241.CrossRefGoogle ScholarPubMed
YANG, L., TAN, G.Y., FU, Y.Q., FENG, J.H. and ZHANG, M.H. (2010) Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comparative Biochemistry and Physiology C Toxicology and Pharmacology 151: 204-208.CrossRefGoogle ScholarPubMed
YAO, H., ZHAO, W., ZHAO, X., FAN, R., KHOSO, P.A., ZHANG, Z., LIU, W. and XU, S. (2014) Selenium deficiency mainly influences the gene expressions of antioxidative selenoproteins in chicken muscles. Biological Trace Element Research 161: 318-327.CrossRefGoogle ScholarPubMed
YU, J., CHEN, Y., ZHAI, L., ZHANG, L., XU, Y., WANG, S. and HU, S. (2015) Antioxidative effect of ginseng stem-leaf saponins on oxidative stress induced by cyclophosphamide in chickens. Poultry Science 94: 927-933.CrossRefGoogle ScholarPubMed
ZHANG, G.F., YANG, Z.B., WANG, Y., YANG, W.R., JIANG, S.Z. and GAI, G.S. (2009) Effects of ginger root (Zingiber officinale) processed to different particle sizes on growth performance, antioxidant status, and serum metabolites of broiler chickens. Poultry Science 88: 2159-2166.CrossRefGoogle ScholarPubMed
ZHANG, G.G., YANG, Z.B., WANG, Y. and YANG, W.R. (2013) Effects of Astragalus membranaceus root processed to different particle sizes on growth performance, antioxidant status, and serum metabolites of broiler chickens. Poultry Science 92: 178-183.CrossRefGoogle ScholarPubMed
ZHANG, Z.W., WANG, Q.H., ZHANG, J.L., LI, S., WANG, X.L. and XU, S.W. (2012) Effects of oxidative stress on immunosuppression induced by selenium deficiency in chickens. Biological Trace Element Research 149: 352-361.CrossRefGoogle ScholarPubMed
ZHANG, L., HU, T.J., LIU, H.L. and SHUAI, X.H. (2011) Inhibitory effect of Sargassum polysaccharide on oxidative stress induced by infectious bursa disease virus in chicken bursal lymphocytes. International Journal of Biological Macromolecules 49: 607-615.CrossRefGoogle ScholarPubMed
ZHAO, F.Q., ZHANG, Z.W., WANG, C., ZHANG, B., YAO, H.D., LI, S. and XU, S.W. (2013) The role of heat shock proteins in inflammatory injury induced by cold stress in chicken hearts. Cell Stress Chaperones 18: 773-783.CrossRefGoogle ScholarPubMed
ZHAO, X., YAO, H., FAN, R., ZHANG, Z. and XU, S. (2014a) Selenium deficiency influences nitric oxide and selenoproteins in pancreas of chickens. Biological Trace Element Research 161: 341-349.CrossRefGoogle ScholarPubMed
ZHAO, F.Q., ZHANG, Z.W., QU, J.P., YAO, H.D., LI, M., LI, S. and XU, S.W. (2014b) Cold stress induces antioxidants and Hsps in chicken immune organs. Cell Stress Chaperones 19: 635-648.CrossRefGoogle ScholarPubMed
ZHAO, L., SUN, L.H., HUANG, J.Q., BRIENS, M., QI, D.S., XU, S.W. and LEI, X.G. (2017) A Novel Organic Selenium Compound Exerts Unique Regulation of Selenium Speciation, Selenogenome, and Selenoproteins in Broiler Chicks. Journal of Nutrition 147: 789-797.CrossRefGoogle ScholarPubMed
ZHENG, X.C., WU, Q.J., SONG, Z.H., ZHANG, H., ZHANG, J.F., ZHANG, L.L., ZHANG, T.Y., WANG, C. and WANG, T. (2016) Effects of Oridonin on growth performance and oxidative stress in broilers challenged with lipopolysaccharide. Poultry Science 95: 2281-2289.CrossRefGoogle ScholarPubMed
ZHOU, M., ZENG, D., NI, X., TU, T., YIN, Z., PAN, K. and JING, B. (2016) Effects of Bacillus licheniformis on the growth performance and expression of lipid metabolism-related genes in broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Lipids in Health and Disease 15: 48. doi: 10.1186/s12944-016-0219-2.CrossRefGoogle ScholarPubMed
ZHU, S.Y., LI, X.N., SUN, X.C., LIN, J., LI, W., ZHANG, C. and LI, J.L. (2017) Biochemical characterization of the selenoproteome in Gallus gallus via bioinformatics analysis: structure-function relationships and interactions of binding molecules. Metallomics 9: 124-131.CrossRefGoogle ScholarPubMed
ZOIDIS, E., DEMIRIS, N., KOMINAKIS, A. and PAPPAS, A.C. (2014) Meta-analysis of selenium accumulation and expression of antioxidant enzymes in chicken tissues. Animal 8: 542-554.CrossRefGoogle ScholarPubMed
ZOIDIS, E., PAPPAS, A.C., GEORGIOU, C.A., KOMAITIS, E. and FEGGEROS, K. (2010) Selenium affects the expression of GPx4 and catalase in the liver of chicken. Comparative Biochemistry and Physiology. B Biochemistry and Molecular Biology 155: 294-300.CrossRefGoogle ScholarPubMed