Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T09:28:12.479Z Has data issue: false hasContentIssue false

Immunological Responses as Indicators of Stress

Published online by Cambridge University Press:  18 September 2007

H. S. Siegel
Affiliation:
Southeast Poultry Research Laboratory, ARS-USDA 934 College Station Road, Athens, GA 30605
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Authur, J. R., Boyne, R., Okolow-Zubkowaka, M. J. and Hill., H. A. O. (1982). Neutrophils from Se and Cu deficient cattle. In: Trace elements in Metabolism and Man and Animals. Ed. Cawthorne, J. M., Howell, J. McC. and White, C. L..Google Scholar
Balow, J. E. and Rosenthal, A. S. (1973). Glucocorticoid suppression of macrophage migration inhibitory factor. Journal Experimental Medicine 137: 1031.CrossRefGoogle ScholarPubMed
Bellavite, P., Dri, P., Bisiacchi, B. and Patriarca, P. (1977). Catalase deficiency in mycloperoxidase deficient polymorphonuclear leucocytes from chickens. FEBS Letters, 81: 73.Google Scholar
Biggs, P. M. (1977). The next ten years. Animal Health 3: 106.Google Scholar
Biozzi, G., Mouton, D., Sant' Anna, O. A., Passos, H. C., Gennari, M., Reis, M. H., Ferreira, V. C. A., Heumann, A. M., Bouthaillier, Y., Ibanez, O. M., Stiffel, C. and Siqueira, M. (1979). Genetics of immuno-responsiveness to natural antigens in the mouse. Current Topics in Microbiology and Immunology. 5: 31.Google Scholar
Blecha, F. and Kelley, K. W. (1981). Cold stress reduces the acquisition of colostral immunoglobulin in piglets. Journal Animal Science 52: 594.CrossRefGoogle ScholarPubMed
Blecha, F., Kelley, K. W. and Satterlee, D. G. (1982). Adrenal involvement in the expression of delayed-type hyper-sensitivity in SRBC and contact sensitivity to DNFB in stressed mice. Proceedings Society of Experimental Biology and Medicine 69: 247.CrossRefGoogle Scholar
Braun, W., Masaaki, I., Winchurch, R. and Webb, D. (1971). On the role of cyclic AMP in immune responses. Annals, New York Academy of Science 185: 417.CrossRefGoogle ScholarPubMed
Brown, K. I. and Nestor, K. E. (1973). Some physiological responses of turkeys selected for high and low adrenal response to cold stress. Poultry Science 52: 1948.Google Scholar
Brune, K. and Spitznagel, J. K. (1973). Peroxidaseless chicken leucocytes: isolation and characterization of antibacterial granules. Journal Infectious Diseases 127: 84.Google Scholar
Burns, R. B. (1983). Antibody production suppressed in the domestic fowl (Gallus domesticus) by zinc deficiency. Avian Pathology 12: 141.CrossRefGoogle ScholarPubMed
Colgano, G. L., Jensen, L. S. and Long, P. L. (1984). Effect of selenium on peripheral blood leucocytes of chickens infected with Eimeria. Poultry Science 63: in press.Google Scholar
Curtis, S. E., Kingdom, D. A. and Drummond, J. G. (1976). Effects of age and cold on pulmonary bacterial clearance in the young pig. American Journal Veterinary Research 37: 299.Google ScholarPubMed
Dougherty, T. F. and White, A. (1944). Influence of hormones on lymphoid tissue structure and function. The role of pituitary adenotrophic hormone in the regulation of lymphocytes and other cellular elements of blood. Endocrinology 35: 1.Google Scholar
Dumont, J. E., Willems, C., Sande, J. Van and Neve, P. (1971). Regulation of the release of thyroid hormones: the role of cyclic AMP. Annals New York Academy of Science 185: 291316.Google Scholar
Edens, F. W. and Siegel, H. S. (1975). Adrenal responses in high and low ACTH response lines of chickens during acute heat stress General comparative Endocrinology 25: 64.CrossRefGoogle ScholarPubMed
Edens, F. W., Thaxton, P., Morgan, G. W. and Parkhurst, C. R. (1983). Grouping in Japanese quail. 2 Suppression of the humoral immunity. Poultry Science 62: 2479.CrossRefGoogle ScholarPubMed
Ganong, W. F. (1963). The central nervous system and synthesis and release of adrenocorticotropic hormone. In: Advances in Neuroendocrinology. Ed. A. V.Nalbandov. U. Illinois Press.Google Scholar
Garren, H. W. and Shaffner, C. S. (1954). Factors concerned in the response of young New Hampshires to muscular fatigue. Poultry Science 33: 1095.Google Scholar
Garren, J. W. and Shaffner, C. S. (1956). How the period of exposure to different stress stimuli affects the endocrine and lymphatic gland weights of young chicks. Poultry Science 34: 266.CrossRefGoogle Scholar
Gilis, S., Crabtree, G. R. and Smith, K. A. (1979). Glucocorticoid-induced inhibition of T-cell growth factor production. 1. The effect of mitogen-induced lymphoyete proliferation. Journal of Immunology 123: 1624.CrossRefGoogle Scholar
Glick, B. (1957). Experimental modification of the growth of the bursa of Fabricius. Poultry Science 36: 18.CrossRefGoogle Scholar
Glick, B. (1967). Antibody and gland studies in cortisone and ACTH-injected birds. Journal of Immunology 98: 1076.CrossRefGoogle ScholarPubMed
Glick, B., Day, E. J. and Thompson, D. (1981). Calorie-protein deficiencies and the immune response of the chicken 1. Humoral immunity. Poultry Science 60: 2494.CrossRefGoogle Scholar
Glick, B., Taylor, R. L. Jr., Martin, D. E., Watabe, D., Day, E. J. and Thompson, D. (1983). Calorie-protein deficiencies and the immune response of the chicken 11. Cell-mediated immunity. Poultry Science 62: 1889.Google Scholar
Gould, N. R. and Siegel, H. S. (1981). Viability of and corticosteroid binding in lymphoid cells of various tissues after corticotropin injections. Poultry Science 60: 891.CrossRefGoogle Scholar
Gross, W. B. (1962). Blood cultures, blood counts, and temperature records in an experimentally produced “air sac disease” and uncomplicated Escherichia coli infection in chickens Poultry Science 41: 691.CrossRefGoogle Scholar
Gross, W. B. (1972). Effect of social stress on occurrence of Marek's disease in chickens. American Journal of Veterinary Research 33: 2275.Google ScholarPubMed
Gross, W. B. (1979). Comparison of dose effect of sheep red cells on antibody response in two lines of chickens. Avian Diseases 23: 526.CrossRefGoogle Scholar
Gross, W. B. and Colmano, G. (1965). The effect of social isolation on resistance of some infectious diseases. Poultry Science 48: 515.Google Scholar
Gross, W. B. and Siegel, H. S. (1983). Evaluation of heterophil, lymphocyte ratio as a measure of stress in chickens. Avian Diseases 27: 972.Google Scholar
Gross, W. B. and Siegel, P. B. (1973). Effects of social stress and steroids on antibody production. Avain Diseases 17: 807.Google Scholar
Gross, W. B. and Siegel, P. B. (1975). Immune response to Escherichia coli. American Journal of Veterinary Research 36: 568.Google ScholarPubMed
Hall, R. D., Gross, W. B., Turner, E. C. and Siegel, P. B. (1978). Initial observations on the effect of corticosterone and inbred antibody competency in chickens on population development of the Northern feather mite. Poultry Science 57: 1728.CrossRefGoogle Scholar
Henken, A. M., Groote Schaarseberg, A. M. J. and Nieuwland, M. G. B. (1983). The effect of environmental temperature on immune response and metabolism of the young chicken. 3. Effect of environmental temperature on the humoral immune response following injection of sheep red blood cells. Poultry Science 62: 51.Google Scholar
Henken, A. M., Verstegen, W. A., Hel, W.Van Der and Knol, E. F. (1982). The effect of environmental temperature on immune response and metabolism of the young chickens. 6. Effect of environmental temperature on heat production in pullets in relation to feeding levels.: Proceedings 9th Symposium Metabolism of Farm Animal,Lillihammer, Norway.Google Scholar
Holmes, W. N. and Phillips, J. G. (1976). The adrenal cortex of birds. In: General, Comparative and Clinical Endocrinology of the Adrenal Cortex Ed. Chester-Jones, I. and I. W., Henderson. Vol. 1. Academic Press, New York, NY.Google Scholar
Jones, M. T. and Hillhouse, E. W. (1977). Neurotransmitter regulation of corticotropin-releasing factor, in vitro. Annals New York Adademy of Science 297: 536.Google Scholar
Juszkiewicz, T., Cakalow, B., Stefamankowa, and Madjski, Z. (1967). Experimental pasteurella infection in normal and chlorpromazine—premedicated cockerels, subjected to heat stress. Pol. Arch. Weter 10: 601.Google Scholar
Kelley, K. W. (1983). Immunobiology of domestic animals as affected by hot and cold weather. Transactions of the American Society of Agricultural Engineers. 26: 834.CrossRefGoogle Scholar
Leibovitch, S. J. and Ross, R. (1973). The role of the macrophage in would repair. A study with hydrocortisone and antimacrtophate serum. American Journal of Pathology 78: 71.Google Scholar
Lockard, V. G., Grogan, J. B. and Brunson, J. G. (1973). Alterations in the bactericidal ability of rabbit alveolar macrophages as a result of tumbling stress. American Journal of Pathology 70: 57.Google Scholar
Marsh, J. A., Dietert, R. R. and Combs, G. F. Jr. (1981). Influence of dietary selenium and vitamin E on the humoral immune response of the chick. Proceedings Society Experimental Biology and Medicine 166: 228.CrossRefGoogle ScholarPubMed
Meyer, R. K., Aspinall, R. L., Graetzer, M. A. and Wolfe, H. R. (1964). Effect of corticosterone on the skin homograft reaction and on the precipitin and haemagglutinin production in thymectomized and bursectomized chickens. Journal of Immunology 92: 446.Google Scholar
Morgan, G. W., Thaxton, P. and Edens, F. W. (1976). Reduced symptoms of anaphylaxis in chickens by ACTH and heat. Poultry Science 55: 1498.Google Scholar
Nir, I., Yam, D. and Perek, M. (1975). Effects of stress on the corticosterone content of the blood plasma and adrenal gland of intract and bursetomized Gallus domesticus. Poultry Science 54: 2101.CrossRefGoogle Scholar
Pardue, S. L. and Thaxton, J. P. (1984). Evidence for amelioration of steroid-mediated immunosuppression by ascorbic acid. Poultry Science 63: 1262.Google Scholar
Pauling, L. (1976). Vitamin C. The Common Cold and the Flu. W. H. Freeman and Co. San Francisco, CA.Google Scholar
Pavlidis, N. and Chirigos, M. (1980). Stress-induced impairment of macrophage tumericidal function. Psychosamatic Medicine. 42: 47.CrossRefGoogle Scholar
Prinz, W., Bloch, J., Gilich, G. and Mitchell, G. (1980). A systematic study of the effect of vitamin C supplementation on humoral immune response in ascorbate-dependent mammals. International Journal of Veterinary Nutrition Research 50: 294.Google Scholar
Ram, T. and Hutt, F. B. (1955). The relative importance of body temperature and lymphocytes in genetic resistance to Salmonella pullorum in fowl. American Journal of Veterinary Research 16: 437.Google ScholarPubMed
Regnier, J. A. and Kelley, K. W. (1981). Heat- and cold-stress suppresses in vivo and in vitro cellular immune responses of chickens. American Journal of Veterinary Research 42: 294.Google Scholar
Regnier, J. A., Kelley, K. W. and Gaskins, C. T. (1980). Acute thermal stressors and synthesis of antibodies in chickens. Poultry Science 59: 985.Google Scholar
Rindani, T. H. and Selye, H. (1953). Inflammation is influenced by topical blockage of reticulo-endothelial system. Pritish Journal of Experimental Pathology 34: 674.Google Scholar
Robinson, G. A. and Sutherland, E. W. (1971). Cyclic AMP and the function of eukaryotic cells: an introduction. Annals New York Academy Science 185: 5.Google Scholar
Sainsbury, D. W. B. (1974). The influence of environmental factors on the health of livestock. Proceedings 1st International Livestock-Environment symposium American Society Agricultural Engineers. St. Joseph, Ml.pp4.Google Scholar
Salahuddin, S. Z., Markham, P. D., Lindner, S. G., Gootenberg, J., Popovic, M., Hemi, H., Sarin, P. S. and Gallo, R. C. (1984). Lymphokine production by cultured human T cells transformed by human T-cell leukemia-lymphoma virus 1. Science 223: 703.Google Scholar
Sato, K. and Glick, B. (1970). Antibody and cell mediated immunity in corticosteroid-treated chicks. Poultry Science 49: 982.Google Scholar
Sharma, J. M. and Coulson, B. D. (1979). Presence of natural killer cells in specific pathogen free chickens. Journal National Cancer Institute 63: 527.Google Scholar
Siegel, B. V. (1974). Enhanced interferon response to murine leukemia virus by ascorbic acid. Infect. Immun. 10: 409.Google Scholar
Siegel, B. V. and Morton, J. I. (1977). Vitamin C and the immune response Experientia 33: 393.CrossRefGoogle ScholarPubMed
Siegel, H. S. (1980). Physiological stress in birds. BioScience 30: 529.CrossRefGoogle Scholar
Siegel, H. S. and Gould, N. R. (1982). High temperature and corticosteroid in the lymphocytes of domestic fowl (Gallus domesticus) General and Comparative Endocrinology. 48: 348.Google Scholar
Siegel, H. S. and Gross, W. B. (1965). Social grouping, stress, and resistance to coliform infection in cockerels. Poultry Science 44: 1530.Google Scholar
Siegel, H. S. and Latimer, J. W. (1970). Bone and blood calcium responses to adrenocorticotropin, cortisol and low environmental temperature in young chickens. Proceedings 14th World Poultry congress Madrid p. 453.Google Scholar
Siegel, H. S. and Latimer, J. W. (1974). Antibody responses in growing chickens fed o, p'-DDD and injected with ACTH. American Zoology 14: 1204 (Abstract).Google Scholar
Siegel, H. S. and Latimer, J. W. (1975). Social interactions and antibody titers in young male chickens. Animal Behaviour 23: 323.Google Scholar
Siegel, H. S. and Latimer, J. W. (1983). Effects of high temperature and antigen concentration on agglutinin response and corticosteroids in White Rock males. Poultry Science 62: 1501.Google Scholar
Siegel, H. S., Latimer, J. A. and Gould, N. R. (1983). Concentration of Salmonella pullorum antigen and the immunosuppressive effect of ACTH in growing chickens. Poultry Science 62: 897.Google Scholar
Sinha, S. K., Hanson., P. R. and Brandly, C. A. (1957). Effect of environmental temperature upon facility of aerosol transmission of infection and severity of Newcastle disease among chickens. Journal Infectious Diseases 100: 162.Google Scholar
Soerjadi, A. S., Druitt, J. H., Lloyd, A. B. and Cumming, R. B. (1979). Effect of environmental temperature on susceptibility of young chickens to Salmonella typhimurium. Australian Veterinary Journal 55: 413.Google Scholar
Stott, G. H., Wiersma, F., Manefee, B. E. and Radwanski, F. R. (1976). Influence of environment on passive immunity in calves. Journal Diary Science 59: 1306.Google Scholar
SubbaRao, D. S. V. Rao, D. S. V. and Glick, B. (1977). Effect of cold exposure on the immune response of chickens. Poultry Science 56: 992.CrossRefGoogle Scholar
Sullivan, D. A. and Wira, C. R. (1979). Sex hormone and glucocorticoid receptor in the bursa of Fabricius of immature chickens. Journal Immunology 122: 2617.Google Scholar
Talmadge, D. W. and Claman, H. N. (1964). Cell potential: It's mutation and selection. Pages 4968in Thymus in Immunobiology Good, R. E. and A. E., Gabielsen, ed. Harper and Roe, New York, NY.Google Scholar
Thaxton, P. and Briggs, D. M. (1972). Effect of immobilization and formaldehyde on immunological responsiveness in young chickens. Poultry Science 51: 342.Google Scholar
Thaxton, P. and Siegel, H. S. (1970). Immunodepression in young chickens by high environmental temperature. Poultry Science 49: 202.CrossRefGoogle ScholarPubMed
Thaxton, P. and Siegel, H. S. (1973). Modification of high temperature and ACTH mediated immunosuppression by metyrapone. Poultry Science 52: 618.Google Scholar
Thaxton, P., Wyatt, R. D. and Hamilton, P. B. (1974). The effect of environmental temperature on parathyroid infection in the neonatal chicken. Poultry Science 53: 88.Google Scholar
Thompson, D. L., Elgert, K. D., Gross, W. B. and Siegel, P. B. (1980). Cell-mediated immunity in Marek's disease virus-infected chickens genetically selected for high and low concentrations of plasma corticosterone. American Journal of Veterinary Research 41: 91.Google Scholar
Thompson, E. B. and Lippman, M. E. (1974). Mechanism of action of glucocorticoids. Metabolism 23: 159.Google Scholar
Tizard, I. R. (1977). Page 90 in An Introduction to Veterinary Immunology. W. B. Saunders Co., Philadelphia, PA.Google Scholar
Weiss, S. J., Lampert, M. B. and Test, S. T. (1983). Long-lived oxidants generated by human neutrophils: Characterization and bioactivity. Science 222: 625.CrossRefGoogle ScholarPubMed
Werb, Z. (1978). Biochemical actions of glucorticoids on macrophages in culture. Specific inhibition of elastase, collagenase, and plasminogen activator secretion and effects on other metabolic functions. Journal of Experimental Medicine 147: 1695.Google Scholar
Werb, Z., Foley, R. and Munck, A. (1978). Interactions of glucocorticoids with macrophages. Identification of glucocorticoid receptors in monoeytes and macrophages. Journal of Experimental Medicine 147: 1684.Google Scholar
van der Zijpp, A. J., (1983). The effect of genetic origin, source of antigen and dose of antigen on the immue response of cockerels. Poultry Science 62: 205.Google Scholar