Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T00:06:23.409Z Has data issue: false hasContentIssue false

Nutrition of the domestic pigeon (Columba livia domestica)

Published online by Cambridge University Press:  18 September 2007

J. Sales*
Affiliation:
Laboratory of Animal Nutrition, Dept. of Animal Nutrition, Genetics, Breeding and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820, Merelbeke, Belgium
G.P.J. Janssens
Affiliation:
Laboratory of Animal Nutrition, Dept. of Animal Nutrition, Genetics, Breeding and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820, Merelbeke, Belgium
*
*Corresponding author: e-mail: james.sales@rug.ac.be
Get access

Abstract

Despite the use of pigeons (Columba livia domestica) since 2500 BC by man for meat production, ornamentals, sports and experimental animals, limited information is available on their nutrient requirements and feeding. This could partly be attributed to the rearing of growing chicks (squabs) to mature body weight at 28 days by the parents. Squabs have an extraordinary high rate of maturing (0.1466 to 0.1945 g/d) in comparison to other domesticated avian species such as poultry (0.0450 g/d) and quail (0.077 to 0.097 g/d). This growth rate is achieved by regurgitation of a holocrine substance (crop milk) by both parents, formed in response to prolactin secretion and triggered by brooding. Crop milk consists primarily of protein (11.0 to 18.8% on as is basis) and fat (4.5 to 12.7% on as is basis), and lacks significant levels of carbohydrates. Furthermore, adult pigeons are mainly fed mixtures of whole grains. Special feeding characteristics inherent to the pigeon thus prevent extrapolation of nutrient requirements determined with other avian species. A dietary crude protein content of between 12 and 18%, and metabolizable energy (ME) content of around 12 MJ/kg, based on production of offspring, is recommended for feeding of adult pigeons. Apparent metabolizable energy, corrected for nitrogen retention (AMEn) for maize (14.76 MJ/kg), barley (12.36 MJ/kg), sorghum (13.87 MJ/kg) and peas (14.01 MJ/kg) did not differ substantially from values derived for poultry. Pigeons could utilize lipids better than carbohydrates as energy sources. Feed additives and suggestions for future research are discussed.

Type
Reviews
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borghijs, H.K. and De Wilde, R.O. (1992) The influence of two different dosages of L-carnitine on some blood parameters during exercise in trained pigeons. Journal of Veterinary Nutrition 1: 3135.Google Scholar
Böttcher, J., Wegner, R.M., Petersen, J. and Gerken, M. (1985) Untersuchungen zur Reproduktions-, Mast- und Schlachtleistung von Masttauhen. II. Mitteilung: Einfluβ des Rohproteingehaltes im Futter und des Schlachtalters der Jungtauben. Archiv füir Geflügelkunde 49: 6372.Google Scholar
Carr, R.H. and James, C.M. (1931) Synthesis of adequate proteins in the glands of the pigeon crop. American Journal of Physiology 97: 227331.CrossRefGoogle Scholar
Csontos, G. (1981) Feed consumption of breeder pigeons in different phases of production. Thesis, Agricultural College, Kaposvar, Hungary (Hungarian).Google Scholar
Cilliers, S.C., Hayes, J.P., Maritz, J.S., Chwalibog, A. and Du Preez, J.J. (1995) Growth curves of ostriches (Struthio camelus) from Oudtshoorn in South Africa. Animal Production 59: 309313.Google Scholar
Dabrowska, W. (1932) Sur la composition chimique de la sécrétion lactée du jabot du pigeon par rapport au taux d' accroissement des pigeonnaux. Comptes rendus des séances de la Société de biologic et ses filiales 110: 10911093.Google Scholar
Davies, W.L. (1939) The composition of the crop-milk of pigeons. Biochemical Journal 33: 898901.CrossRefGoogle ScholarPubMed
De Cock, H., Simoens, P., Gyselbrecht, C. and De Geest, J. P., (1991) Morfologie van de krop en de kropmilk bij de duif (Columba livia domestica). Vlaams Diergeneeskunde Tijdschrift 60: 91100.Google Scholar
Desmeth, M. (1980) Lipid composition of pigeon cropmilk – II. Fatty acids. Comparative Biochemistry and Physiology 66B: 135138.Google Scholar
Desmeth, M. and Vandeputte-Poma, J. (1980) Lipid composition of pigeon cropmilk – I. Total lipids and lipid classes. Comparative Biochemistry and Physiology 66B: 129133.Google Scholar
Du, Z.Z., Li, W.P., Shi, Z.G., Shen, Y.Y. and Li, H.Y. (1993) Effect of artificial feeding of pigeons at different ages. Gansu Nongye Daxue Xuebao 28: 1012 (Chinese with English abstract).Google Scholar
Dublecz, K., Vincze, L., Meleg, I., Wáagner, L., Pál, L. and Bartos, Á. (1999) Comparative study on the energy utilization of pigeons, guinea-fowls and broiler chickens. Acta Agraria Kaposváriensis 3: 3540.Google Scholar
Du Preez, J.J. and Sales, J. (1997) Growth rate of different sexes of the European quail (Coturnix coturnix). British Poultry Science 38: 314315.CrossRefGoogle ScholarPubMed
Emmans, G.C. (1989) The growth of turkeys. In: Recent Advances in Turkey Science (Nixey, C. and Grey, T.C., Eds.), British Poultry Science Symposium 21, Butterworths, London, UK, pp. 135166.Google Scholar
Emmans, G.C. and Fisher, C. (1986) Problems in nutritional theory. In: Nutrient Requirements of Poultry and Nutritional Research (Fisher, C. and Boorman, K. N, Eds.), British Poultry Science Symposium 19, Butterworths, London, UK, pp. 939.Google Scholar
Engelmann, C. (1963) Ernährung und Fütterung des Geflügela, 4th ed. Neumann Verlag, Radebeul, Germany.Google Scholar
Fekete, S., Meleg, I., Hullar, I. and Zoldag, L. (1999) Studies on the energy content of pigeon feeds. II. Determination of the incorporated energy. Poultry Science 78: 17631767.CrossRefGoogle ScholarPubMed
Farrando, R., Wolter, R., Fourlan, C. and Morice, M. (1971) Le lait de pigeon. Annales de la Nutrition et de l' Alimentation 25: 241251.Google Scholar
George, J.C. and Jyotti, D. (1955) The lipid content and its reduction in the muscle and liver during long and sustained muscular activity. Journal of Animal Morphology and Physiology 2: 29.Google Scholar
Goodman, H.M. and Griminger, P. (1969) Effect of dietary source racing performance in the pigeon. Poultry Science 48: 20582063.CrossRefGoogle Scholar
Gous, R.M., Moran, E.T., Stilborn, H.R., Bradford, G.D. and Emmans, G. (1999) Evaluation of the parameters needed to describe the overall growth, the chemical growth, and the growth of feathers and breast muscles of broilers. Poultry Science 78: 812821.CrossRefGoogle ScholarPubMed
Griminger, P. (1983) Digestive system and nutrition. In: Physiology and Behaviour of the Pigeon (Abs, M. Ed.), Academic Press, New York, NY, USA, pp. 1434.Google Scholar
Griminger, P. and Gamarsh, J.L. (1972) Body composition of pigeons. Poultry Science 51: 14641465.CrossRefGoogle ScholarPubMed
Haque, A.K.M., Broom, D.M. and Gaitens, J.F. (1982) Laboratory rearing of woodpigeons. Lab Animal 16: 114115.CrossRefGoogle Scholar
Hatt, J-M. (2002) Digesta kinetics in feral pigeons (Columba livia). In: Proceedings of the Joint Nutrition Symposium, August 21–25, Antwerp, Belgium, p. 86.Google Scholar
Hatt, J-M., Mayes, R.W., Clauss, M. and Lechner-Doll, M. (2001) Use of artificially applied n-alkanes as markers for the estimation of digestibility, food selection and intake in pigeons (Columba livia). Animal Feed Science and Technology 94: 6576.CrossRefGoogle Scholar
Hedge, S.N. (1972) The amino-acid composition of pigeon milk. Current Science 41: 2324.Google Scholar
Hedge, S.N. (1973) The composition of pigeon milk and its effect on growth in chicks. Indian Journal of Experimental Biology 11: 238239.Google Scholar
Horseman, N.D. and Buntin, J.D. (1995) Regulation of pigeon crop milk secretion and parental behaviours by prolactin. Annual Review of Nutrition 15: 213238.CrossRefGoogle ScholarPubMed
Hullar, I., Meleg, I., Fekete, S. and Romvari, R. (1999) Studies on the energy content of pigeon feeds. I. Determination of digestibility and metabolizable energy content. Poultry Science 78: 17571762.CrossRefGoogle ScholarPubMed
Janssen, W.M.M.A. (1989) European Tables of Energy Values for Poultry Feedstuffs. Beekbergen, The Netherlands.Google Scholar
Janssens, G.P.J., Abd-Ellah, A.M., Hesta, M., Millet, S. and De Wilde, R.O.M. (2002a) The influence of L-carnitine on nutrient retention in pigeons (Columba livia domestica) fed corn or peas. In: Proceedings of the Joint Nutrition Symposium, August 21–25, Antwerp, Belgium, p. 91.Google Scholar
Janssens, G.P.J., Abd-Ellah, A.M., Hesta, M., Millet, S. and De Wilde, R.O.M. (2002b) Feed choice in pigeons with or without L-carnitine supplementation. In: Proceedings of the Joint Nutrition Symposium, August 21–25, Antwerp, Belgium, p. 102.Google Scholar
Janssens, G.P.J., Buyse, J., Seynaeve, , Decuypere, E. and De Wilde, R.O.M. (1998) The reduction of heat production in exercising pigeons after L-carnitine supplementation. Poultry Science 77: 578584.CrossRefGoogle ScholarPubMed
Janssens, G.P.J., Hesta, M., Debal, V. and De Wilde, R.O.M. (2000a) The effect of feed enzymes on nutrient and energy retention in young racing pigeons. Annales de Zootechnie 49: 151156.CrossRefGoogle Scholar
Janssens, G.P.J., Hesta, M., Debal, V., Debraekeleer, J. and De Wilde, R.O.M. (2000b) L-carnitine supplementation in breeding pigeons: impact on zootechnical performance and carnitine metabolism. Reproduction Nutrition Development 40: 535548.CrossRefGoogle ScholarPubMed
Janssens, G.P.J., Mast, J., Goddeeris, B.M., Cox, E., Hesta, M. and De Wilde, R.O.M. (2000c) Enhanced specific antibody response to bovine serum albumin in pigeons due to L-carnitine supplementation. British Poultry Science 41: 448453.CrossRefGoogle ScholarPubMed
Janssens, G.P.J., Van Loocke, H., Hesta, M., Debal, V. and De Wilde, R.O.M. (2001) Performance in pigeons fed with or without NSP-degrading enzymes during breeding. Proceedings of the Society of Nutritional Physiology 10: 119.Google Scholar
Kakuk, T. (1991) Feeding of pigeons. In: Pigeon Breeders' Manual (Horn, P. Ed.), Mezögazdaságu Kiadó. Budapest, Hungary, pp. 123148 (Hungarian).Google Scholar
Kirk Baer, C. (1999) Comparative nutrition and feeding considerations of young Columbidae. In: Zoo and wild animal medicine – Current therapy 4 (Fowler, M.E. and Miller, R.E., Eds.), W.B. Saunders, Philadelphia, USA, pp. 269277.Google Scholar
Kirk Baer, C. and Thomas, O.P. (1996) Crop milk composition and squab growth in the Columbidae. In: Proceedings of the First Comparative Nutrition Society Symposium,Leesburg, Virginia, USA, August 2–6, 1996, pp. 75–77.Google Scholar
Klein, P.W. (1974) Die Produktion von Masttauben. Schwein, Stuttgart 26: 497498.Google Scholar
Leash, A., Liebman, J., Taylor, A. and Limbert, R. (1971) An analysis of the crop contents of White Carneaux Pigeons (Columba livia) days one through twenty-seven. Laboratory Animal Science 21: 8690.Google ScholarPubMed
Levi, W.L. (1974) The pigeon. Levi Publishing Company Inc., Sunter, Columbia, S.C., USA.Google Scholar
Meleg, I., Dublecz, K., Vincze, L. and Horn, P. (1999) Effect of dietary crude protein level on reproductive traits of commercial pigeons in different production terms. Acta Agraria Kuposváriensis 3: 247253.Google Scholar
Meleg, I., Dublecz, K., Vincze, L. and Horn, P. (2000) Effects of diets with different levels of protein and energy content on reproductive traits of utility-type pigeons kept in cages. Archiv für Geflügelkunde 64: 211213.Google Scholar
Morice, M. (1970) Essais alimentaires chez la pigeon. Thèse pour le doctorat vétérinaire. Alfort, Ecole nationale vétérinaire d' Alfort, Paris, France.Google Scholar
Orban, J. (1975) Results of large-scale pigeon breed comparison experiments. Baromfitenyesztes Melleklete (Supplement) MEM (Hungarian).Google Scholar
Pace, D.M., Landolt, P.A. and Mussehl, F.E. (1952) The effect of pigeon crop-milk on growth in chickens. Growth 16: 279285.Google ScholarPubMed
Pelzer, A. (1990a) Die Haltung von Fleischtauben. I. Geflügel 32: 942945.Google Scholar
Pelzer, A. (1990b) Die Haltung von Fleischtauben. II. Geflügel 33: 970973.Google Scholar
Reed, L.L., Mendel, L.B. and Vickery, H.B. (1932) The nutritive properties of the “crop milk” of pigeons. American Journal of Physiology 102: 282292.CrossRefGoogle Scholar
Rizmayer, M. (1969) First two years' experience of large-scale meat pigeon breeding at the Racalmas farm of the BOV. Buromfitenyesztes 1: 7 (Hungarian).Google Scholar
Salas, F.A., Randal, P.F. and Latorre, J.R. (1994) Three different protein levels in the production of squab broilers. Journal of Agriculture of the University of Puerto Rico 78: 5153.CrossRefGoogle Scholar
Sales, J. and Du Preez, J.J. (1997) Accrescimento della faraona a piumaggio grigio perla. Rivista di Aviciltura 66: 6667.Google Scholar
Scooley, J.P. and Riddle, O. (1938) The morphological basis of pituitary function in pigeons. American Journal of Anatomy 62: 313349.CrossRefGoogle Scholar
Shetty, S. and Hedge, S.N. (1993) Pigeon milk: a new source of growth factor. Experienta 49: 925928.CrossRefGoogle ScholarPubMed
Sim, J.S. and Hickman, A.R. (1986) Chemical and nutritional characteristics of crop contents of growing squabs. Poultry Science (Supplement 1) 65: 127 (Abstract).Google Scholar
Tsai, S.S., Yeh, W.S., Chi, Y.G. and Itakura, C. (1994) Force-feeding and candidiasis in pigeons. Avian Pathology 23: 569574.Google Scholar
Vandeputte-Poma, J. (1968) Quelques données sur la composition du “lait de pigeon”. Zeitschrift für vergleichende Physiologie 58: 356363.CrossRefGoogle Scholar
Vandeputte-Poma, J. (1980) Feeding, growth and metabolism of the pigeon, Columba livia domestica: duration and role of crop milk feeding. Journal of Comparative Physiology 135: 9799.CrossRefGoogle Scholar
Vandeputte-Poma, J. and Desmeth, M. (1978) Voeding, groei en metabolisme bij de duif. Vlaams Diergeneeskunde Tijdschrift 47: 231235.Google Scholar
Vandeputte-Poma, J. and Van Grembergen, G. (1959) Freie Aminosaure in der Kropfmilch der Taube. Naturwissenschaften 46: 329330.CrossRefGoogle Scholar
Vandeputte-Poma, J. and Van Grembergen, G. (1967) L'evolution postembryonnaire du poids du pigeon domestique. Zeitschrift f¨r vergleichende Physiologie 54: 423425.CrossRefGoogle Scholar
Vogel, K. (1980) Die Taube — Biologie, Haltung, Fütterung, VEB Deutscher Landwirtschaftsverlag, Berlin, Germany.Google Scholar
Waldie, G.A., Olomu, J.M., Cheng, K.M. and Sim, J. (1991) Effects of two feeding systems, two protein levels, and different dietary energy sources and levels on performance of squabbling pigeons. Poultry Science 70: 12061212.CrossRefGoogle Scholar
Wolter, R., Boidot, J.P. and Morice, M. (1970) Essais de determination des besoins azotes du pigeon de rapport. Recueil de Medecine Vetérinaire d' Alfort 146: 113.Google Scholar
Yang, M-C. and Vohra, P. (1987) Protein and metabolizable energy requirements of hand-fed squabs from hatching to 28 days of age. Poultry Science 66: 2017–2023.CrossRefGoogle ScholarPubMed