Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T09:48:50.089Z Has data issue: false hasContentIssue false

Perspectives for Poultry Genetics in the Age of Molecular Biology

Published online by Cambridge University Press:  18 September 2007

B. L. Sheldon
Affiliation:
C.S.I.R.O. Genetics Research Laboratories, North Ryde, N.S.W. 2113, Australia.
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abplanalp, H., (1966). Selection for egg number in chicken and quail populations held under diverse lighting. Proc. XIII World's Poultry Congress.Kiev. pp. 70–74.Google Scholar
Abplanalp, H., (1968). Selection for egg number in chicken and quail populations under unnatural lighting. Proc. 12th Int. Congr. Genetics. Tokyo. Vol. 2: 206.Google Scholar
Abplanalp, H., (1973). Inbreeding for the genetic analysis and improvement of poultry populations. Proc. 22nd Annual National Poultry Breeders' Roundtable.Kansas City, Missouri, pp 61–116.Google Scholar
Abplanalp, H., Ogasawara, F. X. and Asmundson, V. S. (1963). Influence of selection for body weight at different ages on growth of turkeys. Br. Poultry Sci. 4: 71.CrossRefGoogle Scholar
Abplanalp, H., and Lowry, D. (1975). Selection for increased incidence of double yolker eggs in White Leghorn chickens. Poultry Sci. 54: 1724.Google Scholar
Abplanalp, H., and Eklund, J. (1978). A variable selection index for the compensation of correlated genetic change. Theor. App. Genet. 51: 277.CrossRefGoogle ScholarPubMed
Allen, C. P., and Gilmour, D. G. (1962). The B blood group system of chickens. III The effects of two heterozygous genotypes on the survival and egg production of multiple crosses. Genetics 47: 1711.CrossRefGoogle Scholar
Arboleda, C. R., Harris, D. L. and Nordskog, A. W. (1976). Efficiency of selection in layer-type chickens by using supplementary information on feed consumption. I. Selection Index Theory. Theor. App. Genet. 48: 67.CrossRefGoogle ScholarPubMed
Austic, R. E., Baker, D. J. and Cole, R. K. (1977). Susceptibility of a dwarf strain of chickens to rickets. Poultry Sci. 56: 285.CrossRefGoogle ScholarPubMed
Avery, O. T., MacLeod, C. M., and McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 79: 137.CrossRefGoogle Scholar
Ayoub, H. and Merat, P. (1972). Différences enter souches ou entre croisements pour le dimorphisme sexuel du poids a plusieurs ages chez la poule. Ann. Génét. Sél. anim. 4: 445.CrossRefGoogle Scholar
Ayoub, H., and Magraby, M. (1975). Heritability of the differences in body weight between sexes at different ages in two strains of chickens. Ann. Génét. Sél. anim. 7: 299.CrossRefGoogle ScholarPubMed
Baker, R. J., (1974). Selection indexes without economic weights for animal breeding. Can. J. Anim. Sci. 54: 1.CrossRefGoogle Scholar
Baker, C. M. A., and Manwell, C. (1962). Molecular genetics of avian proteins. I. The egg white proteins of the domestic fowl. Br. Poult. Sci. 3: 161.CrossRefGoogle Scholar
Bateson, W. (1902). Experiments with poultry. Reports Evol. Comm. Roy. Soc. 1: 87.Google Scholar
Bateson, W., and Punnett, R. C. (1908). Experimental studies on the physiology of heredity. Poultry. Reports Evol. Comm. Roy. Soc. IV: 18.Google Scholar
Beadle, G. W., and Tatum, E. L. (1941). Genetic control of biochemical reactions in Neurospora. Proc. Natnl. Acad. Sci. 27: 499.CrossRefGoogle ScholarPubMed
Becker, W. A., Spencer, J. V., Verstrate, J. A. and Mirosh, L. A. (1975). Genetic analysis of yolk cholesterol of chicken eggs. Poult. Sci. 54: 1731.Google Scholar
Becker, W. A., Spencer, J. V., Verstrate, J. A.and Mirosh, L. W. (1977). Genetic analysis of chicken egg yolk cholesterol. Poult. Sci. 56: 895.CrossRefGoogle ScholarPubMed
Beckwith, J. R., (1967). Regulation of the lac operon. Science 156: 597.CrossRefGoogle ScholarPubMed
Beckwith, J. R., and Zipser, D. Eds. (1970). The Lactose Operon. Cold Spring Harbor Laborator.Google Scholar
Bennett, Dorothea (1978). Rescue of a lethal T/t locus genotype by chimaerism with normal embryos. Nature 272: 539.CrossRefGoogle ScholarPubMed
Bernier, P. E. and Arscott, G. H. (1972). Fifteen years of observations on the dwarf gene in the domestic fowl. Ann. Génét. Sél. anim. 4: 183.CrossRefGoogle ScholarPubMed
Biggers, J. D., Whitten, M. K. and Whittingham, D. G. (1971). Culture of mouse embryos in vitro. In: Daniel, J. C. (Ed) Methods in Mammalian Embryology. Freeman, San Francisco. pp. 86116.Google Scholar
Biswas, D. K., (1971). A review of genetic improvement in poultry. Proc. First All India Symp. on Poultry Science.Bangalore. pp 1–16.Google Scholar
Bloom, S. E., (1974a). The origins and phenotypic effects of chromosome abnormalities in avian embryos. Proc. XV World's Poultry Congress.New Orleans. pp 316321.Google Scholar
Bloom, S. E., (1974b). Current knowledge about the avian W chromosome. Bioscience. 24: 340.CrossRefGoogle Scholar
Bloom, S. E. and Hsu, T. C. (1975). Differential fluorescence of sister chromatids in chicken embryos exposed to 5-Bromodeoxyuridine. Chromosoma. 51: 261.CrossRefGoogle ScholarPubMed
Bloom, S. E., Cole, R. K. and Bacon, L. D. (1978). Chromosomal localization of the major histocompatibility B-locus in the chicken. Poultry Sci. 57: 1119 (Abstracts of 67th Annual Meeting of American Poultry Science Association).Google Scholar
Bloom, S. E., Shalit, P. and Bacon, L. D. (1978). Chromosomal location of nucleolus organisers in the chicken. Genetics. 88 Suppl. p. s 13.Google Scholar
Bohren, B. B., Hill, W. G. and Robertson, A. (1966). Some observations on asymmetrical correlated responses to selection. Genet. Res. 7: 44.CrossRefGoogle ScholarPubMed
Bordas, A. and Mérat, P. (1976). Effect of laying on food and water intake in dwarf and normal hens. Br. Poult. Sci. 17: 415.CrossRefGoogle Scholar
Breathnach, R., Mandel, J. L., and Chambon, P. (1977). Ovalbumin gene is split in chicken DNA. Nature 270.314.CrossRefGoogle ScholarPubMed
Briggs, R. and King, T. J. (1957). Changes in the nuclei of differentiating endoderm cells as revealed by nuclear transplantation. J. Morphol. 100: 269.CrossRefGoogle Scholar
Briles, W. E., (1954). Evidence for overdominance of the B blood-group alleles in the chicken. Genetics 39: 961.Google Scholar
Briles, W. E. (1960). Blood groups in chickens, their nature and utilization. World's Poult. Sci. J. 16: 223.CrossRefGoogle Scholar
Briles, W. E., McGibbon, W. H. and Irwin, M. R. (1948). Studies of the time of development of cellular antigens in the chicken. Genetics 33: 97.Google ScholarPubMed
Briles, W. E. and McGibbon, W. H. (1948). Heterozygosity of inbred lines of chickens at two loci affecting cellular antigens. Genetics 33: 605.Google Scholar
Briles, W. E., Stone, H. A. and Cole, R. K. (1977). Marek's disease: Effects of B histocompatibility alloalleles in resistant and susceptible chicken lines. Science 195: 193.CrossRefGoogle ScholarPubMed
Brown, K. I. and Nestor, K. E. (1974). Implications of selection for high and low adrenal response to stress. Poultry Sci. 53: 1297.CrossRefGoogle ScholarPubMed
Brown, R. G., Wood, A. S., Reinhart, B. S. and Longworth, D. (1972). Differences in amino acid activation found between dwarf and non-dwarf White Leghorn chickens. Poultry Sci. 51: 1067.CrossRefGoogle ScholarPubMed
Brown, R. G. and Reinhart, B. S. (1975). Relationship of thyroid function to egg production. Can. J. Anim. Sci. 55: 473.Google Scholar
Brumbaugh, J. A. and Lee, K. W. (1975). The gene action and function of two Dopa oxidase positive melanocyte mutants of the fowl. Genetics 81: 333.CrossRefGoogle ScholarPubMed
Buss, E. G., (1975). Investigations of the nature of the gene action regarding riboflavin metabolism. Proc. 24th National Poultry Breeders Roundtable. pp 1–38 Poultry Breeders of America.Kansas City, Missouri.Google Scholar
Chambers, J. R., Smith, A. D., McMillan, I. and Friars, G. W. (1974). Comparison of normal and dwarf broiler breeder hens. Poultry Sci. 53: 864.CrossRefGoogle Scholar
Choudhuri, D. et al. (1976). Genetic variation and covariation for some of the economic traits in four White Leghorn strains. Indian J. Poult. Sci. 11: 189.Google Scholar
Clagett, C. O., Guyer, R. B. and Buss, E. G. (1977). Diabetes insipidus in chickens: Interaction of 17-β-estradiol and AVT in control of water consumption. Poultry Sci. 56: 1703.Google Scholar
Cockerham, C. C. and Weir, B. S. (1977). Quadratic analyses of reciprocal crosses. Biometrics 33: 187.CrossRefGoogle ScholarPubMed
Cocking, E. C., (1977). Plant protoplast fusion: Progress and prospects for agriculture. In: Recombinant Molecules: Impact on Science and Society. Eds. Beers, R. F. Jr., and Bassett, E. G.Raven Press. N.Y. pp 195208.Google Scholar
Cohen, S. N., Cabello, F., Chang, A. C. Y., and Timmis, K. (1977). DNA cloning as a tool for the study of plasmid biology. In: Recombinant Molecules: Impact on Science and Society. (Eds. Beers, R. F. Jr. and Bassett, E. G.). Raven Press N.Y. pp 91105.Google Scholar
Cole, R. K., (1967). Breeding for resistance to Marek's disease. Proc. 16th National Poultry Breeders Roundtable.Poultry Breeders of America.Kansas City, Missouri. pp 79–104.Google Scholar
Cole, R. K., (1973). An autosomal dwarfism in the fowl. Poultry Sci. 52: 2012.Google Scholar
Cole, R. K. and Hutt, F. B. (1973). Selection and heterosis in Cornell White Leghorns: A review, with special consideration of interstrain hybrids. Anim. Br. Abstr. 41: 103.Google Scholar
Cook, W. T. and Siegel, P. B. (1973). Interrelationship of comb loci and mating behaviour in chickens. Can. J. Genet. Cytol. 15: 533.CrossRefGoogle Scholar
Cook, W. T. (1974). Social variables and divergent selection for mating behaviour of male chickens (Gallus domesticus). Anim. Behaviour. 22: 390.CrossRefGoogle Scholar
Cooper, M. D., Kearney, J. F., Lydyard, P. M., Grossi, C. E. and Lawton, A. R. (1976). Studies of generation of B-cell diversity in mouse, man and chicken. Symposia of Quantitative Biology. 40: 139.Google Scholar
Craig, J. V. and McDermid, E. M., (1963). Prolonged skin homograft survival and erythrocyte (β-locus) antigens in young chicks. Transplantation. 1: 191.CrossRefGoogle Scholar
Craig, J. V. et al. , (1975). Changes in relative aggressiveness and social dominance associated with selection for early egg production in chickens. Poultry Sci. 54: 1647.CrossRefGoogle ScholarPubMed
Crawford, R. D., (1971). Rose comb and fertility in Silver Spangled Hamburgs. Poultry Sci. 50. 867.CrossRefGoogle ScholarPubMed
Crawford, R. D. and Smyth, J. R. (1965). The influence of comb genotype on mating behaviour in the domestic fowl. Poultry Sci. 44: 115.CrossRefGoogle ScholarPubMed
Crittenden, L. B., (1967). Genetic control of leukosis resistance. Proc. 16th National Poultry Breeders Roundtable.Poultry Breeders of America.Kansas City, Missouri. pp 66–78.Google Scholar
Crow, J. F. and Kimura, M. (1970). An introduction to population genetics theory. Harper and Row. N.Y.Google Scholar
Cunningham, D. L., Krueger, W. F., Fanguy, R. C. and Bradley, J. W. (1974). Preliminary results of bidirectional selection for yolk cholesterol level in laying hens. Poult. Sci. 53: 384.CrossRefGoogle ScholarPubMed
Cunningham, E. P., (1972). Theory and application of statistical selection methods. Proc. XIV British Poultry Breeders Roundtable. pp 1–38.Google Scholar
Cunningham, E. P., Moen, R. A. and Gjedrem, T. (1970). Restriction of selection indexes. Biometrics 26; 67.CrossRefGoogle ScholarPubMed
Custodio, R. W. S., and Jaap, R. G. (1973). Sex-linked reduction in body size in Golden Sebright Bantams. Poultry Sci. 52; 204.CrossRefGoogle ScholarPubMed
Davidson, Eric H. (1977). Gene activity in early development. Academic Press. New York.Google Scholar
De Silva, P. L. G., (1965). Heterozygosity at red cell antigen locus L and fertility in chickens. Genetics 51; 41.CrossRefGoogle Scholar
Dickerson, G. E., (1955). Genetic slippage in response to selection for multiple objectives. Cold Spring Harb. Symp. Quant. Biol. 20: 213.CrossRefGoogle ScholarPubMed
Dickerson, G. E., (1963). Experimental evaluation of selection theory in poultry. Proc. of XI Int. Congr. Genetics 3: 747.Google Scholar
Dickerson, G. E. and Lindhe, N. B. H. (1977). Potential uses of inbreeding to increase selection response. In: Proc. Int. Conf. on Quantitative Genetics (Eds. Pollak, E., Kempthorne, O. and Bailey, T. B. Jr.) lowa State University Press. pp 323.Google Scholar
Doel, M. T., Houghton, M., Cook, E. A. and Carey, N. H. (1977). The presence of ovalbumin mRNA coding sequences in multiple restriction fragments of chicken DNA. Nucleic Acids Res. 4: 3701.CrossRefGoogle ScholarPubMed
Dolling, C. H. S., Lowe, A. G. and Polkinghorne, R. W. (1971). A sex-linked recessive miniature phenotype in White Leghorn poultry. Aust. J. Exp. Agric. Anim. Husb. 11: 615.CrossRefGoogle Scholar
Dressler, B. and Schmid, M. (1976). Specific arrangement of chromosomes in the spermiogenesis of Gallus domesticus. Chromosoma 58: 387.CrossRefGoogle ScholarPubMed
Dun, R. B. and Fraser, A. S. (1959). Selection for an invariant character vibrissa number in the house mouse. Aust. J. Biol. Sci. 12: 506.CrossRefGoogle Scholar
Dunson, W. A. and Buss, E. G. (1968). Abnormal water balance in a mutant strain of chickens. Science 161: 167.CrossRefGoogle Scholar
Efstratiadis, A., Kafatos, F. C. and Maniatis, T. (1977). The primary structure of rabbit β-Globin mRNA as determined from cloned DNA. Cell 10: 571.CrossRefGoogle ScholarPubMed
Eisen, E. J., (1977). Antagonistic selection index results with mice. In: Proc. Int. Conf. on Quantitative Genetics, 1976. Eds. Pollak, E., Kempthorne, O. and Bailey, T. B. Jr.Iowa State University Press. pp. 117.Google Scholar
Eisen, E. J., Bohren, B. B., McKean, H. E. and King, S. C. (1966). Prediction of topcross performance from inbred performance in poultry. Poult. Sci. 46: 195.CrossRefGoogle Scholar
Emsley, Alan (1976). Optimum genetic improvement of layer productivity. I. Basic parameters, genotype environment interactions and alternative selection criteria. Proc. 25th National Poultry Breeders' Roundtable. pp 1–16 Poultry Breeders of America.Kansas City, Missouri.Google Scholar
Emsley, A., Dickerson, G. E., and Kashyap, T. S. (1976). Genetic parameters in progeny-test selection for field performance of strain-cross layers. Poultry Sci. 56: 121.CrossRefGoogle Scholar
Enfield, F. D., (1977). Selection experiments in Tribolium designed to look at gene action issues. In: Proc. Int. Conf. on Quantitative Genetics, 1976. (Eds. Pollak, E., Kempthorne, O. and Bailey, T. B. Jr.). Iowa State University Press. pp 177190.Google Scholar
Etches, R. J. and Hawes, R. O. (1973). A summary of linkage relationships and a revised linkage map of the chicken. Can. J. Genet. Cytol. 15: 553.CrossRefGoogle Scholar
Falconer, D. S., (1960). Introduction to Quantitative Genetics. Ronald Press Co. NY.Google Scholar
Falconer, D. S., (1977). Some results of the Edinburgh selection experiments with mice. In: Proc. Int. Conf. on Quantitative Genetics, 1976. (Eds. Pollak, E., Kempthorne, O. and Bailey, T. B. Jr.). Iowa State University Press. pp 101115.Google Scholar
Fechheimer, N. S. and Jaap, R. G. (1978). The parental source of heteroploidy in chicken embryos determined with chromosomally marked gametes. J. Reprod. Fert. 52: 141.CrossRefGoogle Scholar
Foster, W. H., (1972). Production and selection under light-dark cycles of abnormal lengths. In Egg Formation and Production, pp 161183. Eds. Freeman, B. M. and Lake, P. E.British Poultry Science Ltd., Edinburgh.Google Scholar
Foster, W. H. (1973). The results of selection of laying stock under ahemeral light-dark cycles. Proc. XV British Poultry Breeders Roundtable.Google Scholar
Fox, A. S., Yoon, S. B. and Gelbart, W. M. (1971). DNA-linked transformation in Drosophila: Genetic analysis of transformed stocks. PNAS 68: 342.CrossRefGoogle Scholar
Fox, A. S. and Valencia, J. I. (1975). Gene transfer in Drosophila melanogaster: Cytological alterations in the salivary chromosomes of transformed stocks. Chromosoma 51: 279.CrossRefGoogle ScholarPubMed
French, H. L. and Nordskog, A. W. (1973). Performance of dwarf chickens compared with normal small bodied chickens. Poultry Sci. 52: 1318.CrossRefGoogle Scholar
Garapin, A. C. et al. , (1978). Isolation, by molecular cloning of a fragment of the split ovalbumin gene. Nature 273. 349.CrossRefGoogle ScholarPubMed
Giesbrecht, F. and Kempthorne, O. (1965). Examination of a repeat mating design for estimating environmental and genetic trends. Biometrics 21: 63.CrossRefGoogle Scholar
Gilmour, D. G., (1954). Selective advantage of heterozygosis for blood group genes among inbred chickens. Heredity 8: 291.Google Scholar
Gilmour, D. G., (1960). Blood groups in chickens. Br. Poult. Sci. 1: 75.CrossRefGoogle Scholar
Gilmour, D. G., (1962). Current status of blood groups in chickens. Ann. N. Y. Acad. Sci. 97: 166.CrossRefGoogle Scholar
Gilmour, D. G. and Morton, J. R. (1970). Association of genetic polymorphisms with embryonic mortality in the chicken. II. The B blood group system and the pure and crossbred progeny of two populations. Genet. Res. Camb. 15: 265.CrossRefGoogle Scholar
Godfrey, E. F., (1968). Ten generations of selection for lysine utilization in Japanese quail. Poult. Sci. 47: 1559.CrossRefGoogle Scholar
Goodwill, R. E. and Walker, R. D. (1978). Epistatic contributions to quantitative traits in Tribolium castaneum. II. Traits closely related to fitness. Theor. Appl. Genet. 51: 305.CrossRefGoogle ScholarPubMed
Goodwin, K., Dickerson, G. E. and Lamoreux, W. F. (1955). A technique for measuring genetic progress in poultry breeding experiments. Poultry Sci. 34: 1197.Google Scholar
Gowe, R. S. et al. , (1959). Environment and poultry breeding problems. 4. The value of a random-bred control strain in a selection study. Poultry Sci. 38: 443.CrossRefGoogle Scholar
Gowe, R. S., Robertson, A. and Latter, B. D. H. (1959). Environment and poultry breeding problems. 5. The design of poultry control strains. Poultry Sci. 38: 462.CrossRefGoogle Scholar
Gowe, R. S. and Strain, J. H. (1963). Effect of selection for increased egg production based on part-year records in two strains of White Leghorns. Can. J. Genet. Cytol. 5: 99.Google Scholar
Gowe, R. S., Lentz, W. E. and Strain, J. H. (1973). Long-term selection for egg production in several strains of White Leghorns: Performance of selected and control strains, including genetic parameters of two control strains. 4th Europ. Poult. Conf.London.225.Google Scholar
Grandhi, R. R. and Brown, R. G. (1975a). Thyroid metabolism in the recessive sex-linked dwarf female chicken. 1. Age related changes in thyroid hormone synthesis and circulating thyroid hormone levels. Poultry Sci. 54: 488.CrossRefGoogle ScholarPubMed
Grandhi, R. R., (1975b). Thyroid metabolism in the recessive sex-linked dwarf female chicken. 3. The influence of exogenous thyroid hormones in glycogen metabolism. Poultry Sci. 54: 499.CrossRefGoogle ScholarPubMed
Grandhi, R. R., Brown, R. G., Reinhart, B. S. and Summer, J. D. (1975a). Thyroid metabolism in the recessive sex-linked dwarf female chicken. 2. Binding of thyroid hormones by serum proteins. Poultry Sci. 54: 493.CrossRefGoogle ScholarPubMed
Grandhi, R. R., (1975b). Thyroid metabolism in the recessive sex-linked dwarf female chicken. 4. The influence of exogenous thyroid hormones on amino acid uptake by plasma and tissues. Poultry Sci. 54: 503.CrossRefGoogle ScholarPubMed
Grandhi, R. R., (1975c). Thyroid metabolism in the recessive sex-linked dwarf female chicken. 5. Effects of exogenous thyroid hormones on amino acid uptake by eggs. Poultry Sci. 54: 510CrossRefGoogle ScholarPubMed
Griffith, F., (1928). Significance of pneumococcal types. J. Hyg., Camb. 27: 113.CrossRefGoogle ScholarPubMed
Gurdon, J. B., (1968). Transplanted nuclei and cell differentiation. Scientific American. 219 No. 6: 24.CrossRefGoogle ScholarPubMed
Gurdon, J. B. (1974). Control of gene expression in animal development. Clarendon Press. Oxford.Google Scholar
Hammer, C. H., Buss, E. G. and Clagett, C. O. (1976). Avian riboflavinuria. IX. Qualitative action of a mutant gene in chicken on riboflavin-binding protein synthesis. Genetics 82: 467.CrossRefGoogle ScholarPubMed
Harada, K. O., and Buss, E. G. (1977). Karyotype analysis of parthenogenetically developing turkeys. Genetics 86, Supp. No. 2, Part 2, pp s25s26.Google Scholar
Harris, H. (1966). Enzyme polymorphisms in man. Proc. Roy. Soc. B. 164: 298.Google ScholarPubMed
Harris, D. L. (1977). Past, present and potential contributions of quantitative genetics to applied animal breeding. In: Proc. Int. Conf. on Quantitative Genetics, 1976 (Eds. Pollak, E., Kempthorn, O. and Bailey, T. B. Jr). Iowa State University Press. pp 587611.Google Scholar
Harris, H. and Watkins, J. P. (1965). Hybrid cells derived from mouse and man: Artificial heterokaryons of mammalian cells from different species. Nature 205: 640.CrossRefGoogle ScholarPubMed
Hawkes, R. O., Etches, R. J. and Buckland, R. B. (1973). Tipsy: A new mutant in the domestic fowl. J. Heredity 64: 310.CrossRefGoogle ScholarPubMed
Henderson, C. R., (1977). Predictions of the merits of single crosses. Theor. App. Genet. 49: 273.CrossRefGoogle ScholarPubMed
Hill, W. G., (1977). Order statistics of correlated variables and implications in genetic selection programmes. II. Response to selection. Biometrics 33: 703.CrossRefGoogle Scholar
Hill, W. G. and Thompson, R. (1977). Design of experiments to estimate offspring-parent regression using selected parents. Anim. Prod. 24: 163.Google Scholar
Hollands, K. G. and Merritt, E. S. (1973a). Selection response to plasma cholesterol level in the chicken. Can. J. Genet. Cytol. 15: 659.Google Scholar
Hollands, K. G. (1973b). Blood pressure and its genetic variation and co-variation with certain economic traits in egg type chickens. Poultry Sci. 52: 1722.CrossRefGoogle ScholarPubMed
Hsu, P. L., Buckland, R. B. and Hawes, R. O. (1975). A new dwarf isolate in the chicken: a possible new allele. at the dw locus. Poultry Sci. 54: 1315.CrossRefGoogle Scholar
Hubby, J. L. and Lewontin, R. C. (1966). A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics 54: 577.CrossRefGoogle Scholar
Hutt, F. B., (1949). Genetics of the Fowl. McGraw-Hill, N.Y.Google Scholar
Hutt, F. B., (1975). Seventy five years of poultry genetics. Proc. 24th Annual National Poultry Breeders' Roundtable. pp 151–159. Poultry Breeders of America,Kansas City, Missouri.Google Scholar
Illmensee, K., Hoppe, P. C., and Croce, C. M. (1978). Chimeric mice derived from human-mouse hybrid cells. P.N.A.S. 75: 1914.CrossRefGoogle ScholarPubMed
Jaap, R. G., (1971). Effect of sex-linked genes on body size and reproduction. World's Poult. Sci. J. 27: 281.Google ScholarPubMed
Jaap, R. G. and Mohammadian, M. (1969). Sex-linked dwarfism and egg production in broiler dams. Poultry Sci. 48: 344.CrossRefGoogle Scholar
Jaap, R. G. and Fechheimer, N. S. (1974). Normal and abnormal avian chromosomes. Proc. XV World's Poultry Congress.New Orleans. pp 313–315.Google Scholar
Jaap, R. G. and Forssido, T. (1976). Exceptionally large eggs from dwarf Leghorn pullets. Poultry Sci. 55: 1120.CrossRefGoogle Scholar
Jacob, F. and Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3: 318.CrossRefGoogle ScholarPubMed
Jain, G. L., (1972). A genetic evaluation of egg mass and egg component traits in 3 lines of domestic fowl. Diss. Abstr. int. B. 32: 5555B.Google Scholar
Johnson, D. D., Crawford, R. D. and Fedoroff, S. (1973). Anticonvulsants and convulsants in epileptic chickens. Fed. Proc. 32: 791.Google Scholar
Jones, D. G., Briles, W. A. and Schjeide, O. A. (1975). A mutation restricting ovulation in chickens. Poultry Sci. 54: 1780.Google Scholar
Jull, Morley A., (1932). Poultry Breeding. John Wiley and Sons. N. Y.Google Scholar
Jull, Morleya A. (1940). Poultry Breeding. 2nd Edition. John Wiley and Sons. N. Y.Google Scholar
Kempthorne, O., (1957). An Introduction to Genetic Statistics. J. Wiley and Sons. N. Y.Google Scholar
Kempthorne, O. and Nordskog, A. W. (1959). Restricted selection indices. Biometrics 15: 10.CrossRefGoogle Scholar
Khan, A. G. (1976). Heritabilities and genetic correlations in related dwarf and normal broiler populations. Br. Poult. Sci. 17: 553.CrossRefGoogle ScholarPubMed
Khan, A. G., Jaap, R. G. and Kanoun, A. K. (1975). Body growth response to selection and cross-breeding in dwarf and normal broiler-type chickens. Poultry Sci. 54: 1239.CrossRefGoogle Scholar
King, S. C., Van Vleck, L. D. and Doolittle, D. P. (1963). Genetic stability of the Cornell randombred control population of White Leghorns. Genet. Res. 4: 290.CrossRefGoogle Scholar
Kinney, T. B., (1969). A summary of reported estimates of heritabilities and genetic and phenotypic correlations for traits of chickens. Agriculture Handbook 363. Agric. Res. Service. U.S.D.A.Google Scholar
Kinney, T. B. Jr., Bohren, B. B., Craig, J. V. and Lowe, P. C. (1970). Responses to individual, family or index selection for short term rate of egg production in chickens. Poultry Sci. 49: 1052.CrossRefGoogle Scholar
Kopp, F. and Stahl, A. (1973). Le dimorphism nucléaire selon le sexe chez l'embryon de poulet (Gallus domesticus). Ann. Génét. 16: 91.Google Scholar
Korf, B. R. and Bloom, S. E. (1974). Cytogenetic and immunologic studies in chickens with autoimmune thyroiditis. J. Heredity 65: 219.CrossRefGoogle ScholarPubMed
Kuenzel, W. J. and Rubenstein, R. B. (1974). Behavioral and physiological studies of a convulsing mutant chicken (Gallus domesticus). J. Exp. Zool. 187: 63.CrossRefGoogle ScholarPubMed
Landauer, W. (1929). Thyrogenous dwarfism in the domestic fowl. Am. J. Anat. 43: 1.CrossRefGoogle Scholar
Lerner, I. M. (1950). Population Genetics and Animal Improvement. Cambridge University Press.Google Scholar
Lerner, I. M. (1954). Genetic Homeostasis. Oliver and Boyd. London.Google Scholar
Lerner, I. M. (1958). The genetic basis of selection. John Wiley and Sons. N. Y.Google Scholar
Lerner, I. M. and Bird, F. H. (1948). Experiments on selection for resistance to riboflavin deficiency in single comb White Leghorns. Poultry Sci. 27: 342.CrossRefGoogle Scholar
Lerner, I. M. and Donald, H. P. (1966). Modern developments in animal breeding. Academic Press. London.Google Scholar
Lewontin, R. C., (1974). The genetic basis of evolutionary change. Columbia Univ. Press. N. Y.Google Scholar
Lewontin, R. C., (1977). The relevance of molecular biology to plant and animal breeding. In: Proc. Int. Conf. on Quantitative Genetics, 1976. (Eds. Pollak, E., Kempthorne, O. and Bailey, T. B. Jr.). Iowa State Univ. Press. pp 5562.Google Scholar
Li, C. C., (1976). First Course in Population Genetics. The Boxwood Press. Pacific Grove, Calif.Google Scholar
Lin, C. C., Newton, D. R., Smink, W. K. and Church, R. B. (1976). A rapid and simple method for the isolation and culture of leukocytes for chromosome analysis in domestic animals. Can. J. Anim. Sci. 56: 27.CrossRefGoogle Scholar
Lodge, J. R., Ax, R. L. and Fechheimer, N. S. (1974). Chromosome aberrations in embryos from in vivo aged sperm. Poultry Sci. 53: 1816.CrossRefGoogle Scholar
Longenecker, B. M., Pazderka, F., Gavora, J. S., Spencer, J. L. and Ruth, R. F. (1976). Lymphoma induced by Herpesvirus: Resistance associated with a major histocompatibility gene. Immunogenetics 3: 401.CrossRefGoogle Scholar
Lowry, Dorothy C. and Hans Abplanalp, (1967). Selection for an increase in multiple ovulation in the chicken. Genetics 56: 573.Google Scholar
Lush, I. E., (1961). Genetic polymorphism in the egg albumin of the domestic fowl. Nature 189: 981.CrossRefGoogle ScholarPubMed
Lush, Jay L. (1945). Animal Breeding Plans. Iowa State College Press.Ames. Mimeo. 364 pp.Google Scholar
McClintock, B., (1961). Some parallels between gene control systems in maize and bacteria. Amer. Nat. 95: 265.CrossRefGoogle Scholar
McClung, M. R., Hyre, H. M. and Martin, W., (1971). Two-way selection for serum alkaline phosphatase in chickens. Poultry Sci. 50: 1605.Google Scholar
McClung, M. R., Wang, A. B. S. and Jones, W. T. (1975). Response to selection for time interval between oviposition in the hen. Poultry Sci. 54: 1791.Google Scholar
McClung, M. R., Wang, A. B. S. and Jones, W. T. (1976). Response to selection for time interval between ovipositions in the hen. Poultry Sci. 55: 160.CrossRefGoogle ScholarPubMed
McDevitt, H. O., (1976). The evolution of genes in the major histocompatibility complex. Fed. Proc. 35: 2168.Google ScholarPubMed
McGibbon, W. H., (1973). Crazy—a nervous disorder in Ancona chicks. J. Heredity 64: 91.CrossRefGoogle ScholarPubMed
McGibbon, W. H., (1976). Another sex-linked allele affecting rate of feathering in the domestic fowl. Poultry Sci. 55: 2064.Google Scholar
McGibbon, W. H., (1977a). Evidence that the restricted ovulator gene (ro) in the chicken is sex-linked. Genetics 86 Suppl. No. 2 Part 2: s4344.Google Scholar
McGibbon, W. H., (1977b). A sex-linked mutation affecting rate of feathering in chickens. Poultry Sci. 56: 872.CrossRefGoogle Scholar
McIndoe, W. M., (1962). Occurrence of two plasma albumins in the domestic fowl. Nature 195: 353.CrossRefGoogle Scholar
Manson, J. M., (1972). Body weight, egg weight and egg production. In: Egg Formation and Production. (Eds. Freeman, B. M. and Lake, P. E.). British Poultry Science Ltd. pp 115137.Google Scholar
Manwell, C. and Baker, C. M. A. (1969). Hybrid proteins, heterosis and the origin of Species. Comp. Biochem. Physiol. 28: 1007.CrossRefGoogle ScholarPubMed
Manwell, C. and Baker, C. M. A. (1970). Molecular Biology and the Origin of species: Heterosis, protein polymorphism and animal breeding. Sidgwick and Jackson, London.Google Scholar
Marks, H. L., (1973). Selection for body weight in Japanese Quail under different nutritional environments. Proc. 22nd National Poultry Breeders' Roundtable. pp 135–183. Poultry Breeders of America.Kansas City, Missouri.Google Scholar
Marks, H. L., Lucas, L. M. and Godfrey, E. F. (1968). Selection for egg production in the domestic fowl under normal and “short day” environments. Poultry Sci. 47: 1170.CrossRefGoogle Scholar
Marks, H. L. and Siegel, H. S. (1977). Divergent selection for plasma cholesterol following ACTH injection in Japanese Quail. Poultry Sci. 56: 1733.Google Scholar
Marks, H. L. and Washburn, K. W. (1977). Divergent selection for yolk cholesterol in laying hens. Br. Poult. Sci. 18: 179.CrossRefGoogle ScholarPubMed
Mateescu, V. et al. , (1974). G-Banding patterns in Gallus domesticus macrochromosomes. Proc. XV World's Poultry Congress. New Orleans. pp 321323.Google Scholar
Mather, Kenneth, (1949). Biometrical Genetics. Methuen, London.Google Scholar
Maw, A. J. G., (1935). Inheritance of skeletal dimensions in the domestic fowl. Sci. Agric. 16: 85.Google Scholar
Maw, A. J. G., (1954). Inherited riboflavin deficency in chicken eggs. Poultry Sci. 33: 216.CrossRefGoogle Scholar
Mellman, W. J., (1964). Human peripheral leucocyte cultures. In: Human chromosome Methodology. Ed. Yunis, J. J.Academic Press. pp 2146.Google Scholar
Mérat, P., (1969). etude d'un gène de nanisme lié au sexe chez la poule. Description sommaire et performances. Ann. Génét. Sél. anim. 1: 19.CrossRefGoogle Scholar
Mérat, P., (1970). Génes a effect visible et coloration ou épaisseur des coquilles d'oeufs. Ann. Génét. Sél. anim. 2: 263.CrossRefGoogle Scholar
Mérat, P., (1972). Gènes a effet visible: relation avec la ponte, le poids des oeufs et le poids des poules adultes. Ann. Génét. Sél. anim. 4: 555.CrossRefGoogle Scholar
Mérat, P., (1973) Différences de mortalité embryonnaire ou post-embryonnaire associées a certains gènes connus chez la poule. Ann. Génét. Sél. anim. 5: 39.CrossRefGoogle Scholar
Mérat, P. and Ricard, F. H. (1974). Étude d'un gène de nanisme lié au sexe chez la poule: importance de l'état d'engraissement et gain de poids chez l'adulte Ann. Sél. Génét. anim. 6: 211.CrossRefGoogle Scholar
Merritt, E. S., (1974). Selection for growth rate in broilers with a minimum increase in adult size. Proc. 1st World Congress on Genetics applied to livestock production. Vol. 1: 951958. Madrid.Google Scholar
Meurier, C. and Mérat, P. (1972). Résistance de certains génotypes a la maladie de Marek chez la poule. II. Influence possible du gène de nanisme dw. Ann. Génét. Sél. anim. 4: 41.CrossRefGoogle Scholar
Meynell, G. C., (1973). Bacterial plasmids. Macmillan Press. London.Google Scholar
Middelkoop, J. H. van (1973). Influence of the dwarfing gene on yolk production and its consequences for normal egg laying of White Plymouth Rock pullets. Arch. Geflügelk 37: 192.Google Scholar
Middelkoop, J. H. van and Kuit, A. R. (1974). The importance of genetic control over abnormal egg laying. Proc. 1st World Congr. on Genetics applied to livestock production. Madrid. p. 1219.Google Scholar
Miller, R. C., Fechheimer, N. S. and Jaap, R. G. (1976). Distribution of karyotype abnormalities in chick embryo sibships. Biol. Reprod. 14: 549.CrossRefGoogle Scholar
Mina, N. S., (1978). Genetic variation of electrophoretic markers in poultry, in relation to inbreeding and production characters. PhD Thesis. Macquarie Univ. Sydney, Australia.Google Scholar
Mintz, B., (1974). Gene control of mammalian differentiation. Annual Review of Genetics 8: 411.CrossRefGoogle ScholarPubMed
Morris, J. A., (1963). Continuous selection for egg production using short-term records. Aust. J. Agric. Res. 14: 909.CrossRefGoogle Scholar
Morton, J. R., Gilmour, D. G., McDermid, E. M. and Ogden, A. L. (1965). Association of blood-group and protein polymorphisms with embryonic mortality in the chicken. Genetics 51: 97.CrossRefGoogle ScholarPubMed
Nahil, M. A., Krueger, W. F., Fanguy, R. C. and Bradley, J. W., (1977). A diallel analysis of egg yolk and blood serum cholesterol inheritance. Poultry Sci. 56: 1692.Google Scholar
Narayan, A. D., (1976). Inheritance of body weight and rate of gain in Japanese Quail. Br. Poult. Sci. 17: 513.CrossRefGoogle ScholarPubMed
Nesheim, M. C., (1972). Genetic variation in Nicotinic acid requirements of chicks. J: Heredity 65: 347.Google Scholar
Nordskog, A. W., (1975). Some limitations of the quantitative genetic approach to poultry improvement. Proc. 24th Annual National Poultry Breeders' Roundtable.Poultry Breeders of America.Kansas City, Missouri. pp 121–149.Google Scholar
Nordskog, A. W., (1977). Success and failure of qauantitative genetic theory in poultry. In: Proc. Int. Conf. on Quantitative Genetics, 1976. Eds. Pollak, E., Kempthorne, O.and Bailey, T. B. Jr., Iowa State University Press pp 569611.Google Scholar
Norsdkog, A. W., Rishell, W. A. and Briggs, D. M. (1973). Influence of B locus blood groups on adult mortality and egg production in the White Leghorn Chicken. Genetics 75: 181.Google Scholar
Norsdkog, A. W., Tolman, H. S., Casey, D. W. and Lin, C. V. (1974). Selection in small populations of chickens. Poult. Sci. 53: 1188.Google Scholar
Nordskog, A. W. and Pevzner, I. Y. (1977). Sex linkage versus maternal antibodies in the genetic control of disease. World's Poult. Sci. J. 33: 21.CrossRefGoogle Scholar
Ogden, A. L., Gilmour, D. G., Morton, J. R., and Macdermid, E. M. (1962). Inherited variants in the transferrins and conalbumins of the chicken. Nature 195: 1026.CrossRefGoogle ScholarPubMed
Ohh, B. K. and Sheldon, B. L. (1970). Selection for dominance of Hairy-wing (Hw) in Drosophila melanogaster. I. Dominance at different levels of phenotype. Genetics 66: 517.CrossRefGoogle ScholarPubMed
Okada, I., Yamada, Y., Akiyama, M., Nishimura, I. and Kamo, N. (1977). Changes in polymorphic gene frequencies in strains of chickens selected for resistance to Marek's disease. Br. Poult. Sci. 18: 237.CrossRefGoogle ScholarPubMed
Osborne, R. (1957). The use of sire and dam family averages in increasing the efficiency of selective breeding under hierarchical mating system. Heredity 11: 93.CrossRefGoogle Scholar
Owens, C. A., Siegel, P. B. and Van Krey, H. P. (1971). Selection for body weight at eight weeks of age. 8. Growth and metabolism in two light environments. Poultry Sci. 50: 548.CrossRefGoogle ScholarPubMed
Pevzner, I. Y., Trowbridge, C. and Nordskog, A. W. (1977). Selection for high and low antibody response to Salmonella pullorum in chickens. Genetics 86 Suppl. No. 2. Part 2: S4849.Google Scholar
Piper, L. R., (1974). Prospects for determining the nature of quantitative genetic variation in domestic animals. Proc. 1st World Congress on Genetics applied to livestock production. Madrid. pp 105109.Google Scholar
Pollak, E., Kempthorne, O., and Bailey, T. B. Jr., (1977). Eds. Proc. Int. Conf. on Quantitative Genetics1976.Iowa State University Press.Google Scholar
Pollock, D. L. and Fechheimer, N. S. (1976). The chromosome number of Gallus domesticus. Br. Poult. Sci. 17: 39.CrossRefGoogle ScholarPubMed
Popescu, C. P. and Mérat, P. (1977). Anomalies chromosomiques chez les embryons de poulet issus de sperme âgé. Ann. Génét. Sél. anim. 9: 147.CrossRefGoogle Scholar
Purchase, H. G., Gilmour, D. G., Romero, C. H. and Okazaki, W. (1977). Post-infection genetic resistance to avian lymphoid leukosis resides in B target cell. Nature 270.: 61.CrossRefGoogle Scholar
Raffel, L. J. and Buss, E. G. (1975). Hormonal influence on a genetically determined excessive appetite for water. Poultry Sci. 54: 1808.Google Scholar
Reddy, P. R. K., Gross, W. B., Van Krey, H. P. and Siegel, P. B. (1975a). Blood parameters of dwarf and normal pullets from growth selected lines before and after Escherichia coli challenge. Poultry Sci. 54: 674.CrossRefGoogle ScholarPubMed
Reddy, P. R. K., Van Krey, H. P., Gross, W. B. and Siegel, P. B. (1975b). Erythrocyte life span in dwarf and normal pullets from growth selected lines of chickens. Poultry Sci. 54: 1301.CrossRefGoogle Scholar
Reddy, P. R. K. and Siegel, P. B. (1977a). Selection for body weight at eight weeks of age. 14. Effects of the sex-linked dwarf gene. Poultry Sci. 56: 1004.CrossRefGoogle Scholar
Reddy, P. R. K.and Siegel, P. B., (1977b). Chromosomal abnormalities in chickens selected for high and low body weight. J. Heredity 68: 253.CrossRefGoogle Scholar
Rendel, J. M., (1959). Canalization of the scute phenotype of Drosophila. Evolution 13: 425.CrossRefGoogle Scholar
Rendel, J. M. (1963). Correlation between the number of scutellar and abdominal bristles in Drosophila melanogaster. Genetics 48: 391.CrossRefGoogle ScholarPubMed
Rendel, J. M., (1979). Canalisation and Selection. In: Quantitative Genetic Variation (Eds. Thoday, J. M. and Thompson, J. M.). Academic Press. N. Y. pp. 139156.CrossRefGoogle Scholar
Rendel, J. M., Sheldon, B. L. and Finlay, D. E. (1965). Canalization of development of scutellar bristles in Drosophila by control of scute locus. Genetics 52: 1137.CrossRefGoogle ScholarPubMed
Rendel, J. M., Sheldon, B. L. and Finlay, D. E. (1966). Selection for canalization of the scute phenotype II. Amer, Naturalist 100: 13.CrossRefGoogle Scholar
Robertson, A. (1966a). Artificial selection in plants and animals. Proc. Roy. Soc. B. 164: 341.Google ScholarPubMed
Robertson, A. (1966b). Biochemical polymorphisms in animal improvement. Proc. 10th Europ. Conf. Animal Blood Groups and Biochem. Polymorph.Paris. pp 35–42.Google Scholar
Robertson, A. (1967). The nature of quantitative genetic variation. In: Heritage from Mendel. University of Wisconsin Press pp 265279.Google Scholar
Robertson, A. (1970a). The state of quantitative genetics in relation to the real world. Proc. 19th National Poultry Breeders Roundtable. pp 1–17 Poultry Breeders of America.Kansas City, Missouri.Google Scholar
Robertson, A (1970b). Molecular Biology and Animal Breeding. Ann Génét. Sél. anim. 2: 393.CrossRefGoogle ScholarPubMed
Robertson, A. (1977). The effect of selection on the estimation of genetic parameters Z. Tierzüchtg Zuchtgsbiol. 94: 131.CrossRefGoogle Scholar
Rodda, D. D., Friars, G. W., Gavora, J. S. and Merritt, E. S. (1977). Genetic parameter estimates and strain comparisons of egg compositional traits. Br. Poult. Sci. 18: 459.CrossRefGoogle Scholar
Rorvik, David, (1978). In His Image—The Cloning of a Man. Lippincott.Google Scholar
Ross, L. J. N., (1977). Antiviral T Cell—mediated immunity in Marek's disease. Nature. 268: 644.CrossRefGoogle ScholarPubMed
Ruddle, F. H., (1973). Linkage analysis in man by somatic cell genetics. Nature 242: 165.CrossRefGoogle Scholar
Schierman, L. W. and Nordskog, A. W. (1961). Relationship of blood type to histocompatibility in chickens. Science 134: 1008.CrossRefGoogle ScholarPubMed
Searle, S. R. (1965). The value of indirect selection. I. Mass Selection Biometrics 21: 682.Google ScholarPubMed
Searle, S. R. (1978). The value of indirect selection. II Progeny testing. Theor. Appl. Genet. 51: 289.CrossRefGoogle ScholarPubMed
Seet, C. P. and Briles, C. O. (1970). The association of the A, B, E parental blood group system genotypes with fertility and hatchability in chickens. Poultry Sci. 49: 922.CrossRefGoogle Scholar
Selvarajah, T. (1971). Some studies on recessive sex-linked dwarfism in the domestic fowl. World Poult. Sci. J. 27: 286.Google Scholar
Sheldon, B. L., (1963a). Studies in artificial selection of quantitative characters. I. Selection for abdominal bristles in Drosophila melanogaster. Aust. J. Biol. Sci. 16: 490.CrossRefGoogle Scholar
Sheldon, B. L., (1963b). Studies in artificial selection of quantitative characters. II. Selection for body weight in Drosophila melanogaster, Aust. J. Biol. Sci. 16: 516.CrossRefGoogle Scholar
Sheldon, B. L. and Milton, M. K. (1972). Studies on the scutellar bristles of Drosophila melanogaster II Long-term selection for high bristle number in the Oregon RC strain and correlated responses in abdominal bristles. Genetics. 71: 567.CrossRefGoogle Scholar
Sheldon, B. L., Podger, R. N. and Morris, J. A. (1969). Response to selection for short interval between eggs in a continuous light environment. Proc. 1969 Australiasian Poultry Science Convention. Surfers Paradise pp 433–441.Google Scholar
Sheldon, B. L. and Podger, R. N. (1974a). Selection for low variability of egg weight. Proc. XV World's Poultry Congress.New Orieans. pp 159.Google Scholar
Sheldon, B. L. and Podger, R. N. (1974b). Selection for short interval between eggs in poultry housed under continuous light. Proc. XV World's Poultry Congress.New Orleans. pp 155157.Google Scholar
Sheldon, B. L., Bobr, L. W., Thorne, M. and Yoo, B. H. (1978). U. V. irraditation of poultry semen and selection for egg production. Proc. XVI World's Poultry Congress.Rio de Janeiro.Google Scholar
Sheldon, B. L. and Evans, M. K. Studies on the scutellar bristles of Drosophila melanogaster III Long-term selection for high scutellar bristle number in three further lines derived from the Oregon RC strain and correlated responses in abdominal bristles (In manuscript).Google Scholar
Shoffner, R. N. (1974). New cytogenetic methods of promise in avian species. Proc. XV World's Poultry Congress.New Orleans. pp 323.Google Scholar
Shoffner, R. N. (1977). Chromosome polymorphisms and heteroploidy in birds. The Nucleus 20: 112.Google Scholar
Shultz, F. T. and Briles, W. E. (1953). The adaptive value of blood group genes in chickens. Genetics 38: 34.CrossRefGoogle ScholarPubMed
Siegel, P. B., (1972). Genetic analysis of male mating behaviour in chickens (Gallus domesticus) I. Artificial selection. Anim. Behav. 20: 564.CrossRefGoogle ScholarPubMed
Silva, M. A., Berger, P. J. and Nordskog, A. W. (1976). On estimating non-additive genetic parameters in chickens. Br. Poult. Sci. 17: 525.CrossRefGoogle ScholarPubMed
Smith, K. P. and Bohren, B. B. (1974). Direct and correlated responses to selection for hatching time in the fowl. Br. Poult. Sci. 15: 597.CrossRefGoogle ScholarPubMed
Smyth, R. J. (1976). Genetic control of melanin pigmentation in the fowl. Proc. 25th National Poultry Breeders Round Table pp 69–86 Poultry Breeders of America,Kansas city, Missouri.Google Scholar
Snyder, M. D., Fechheimer, N. S. and Jaap, R. G. (1975). Incidence and origin of heteroploidy, especially haploidy, in chick embryos from intraline and interline matings. Cytogenet Cell Genet. 14: 63.CrossRefGoogle ScholarPubMed
Solari, A. J., (1977). Ultrastructure of the synaptic autosomes and the ZW bivalent in chicken oocytes. Chromosome 64: 155.CrossRefGoogle Scholar
Somes, R. G. Jr., (1972). Gallus domesticus. Registry of genetic stocks in the United States. Storrs Agricultural Experiment Station Bulletin 420. University of Connecticut. Storrs.Google Scholar
Somes, R. G. Jr., (1973). Linkage relationships in the domestic fowl. Journal of Heredity 64: 217.CrossRefGoogle ScholarPubMed
Somes, R. G. Jr., (1975). Registry of poultry genetic stocks in North America. Storrs Agricultural Experiment Station Bulletin 437. University of Connecticut. Storrs.Google Scholar
Spillman, W. J. (1908). Spurious allelomorphism: results of some recent investigations. Amer. Naturalist 42: 610.CrossRefGoogle Scholar
Stefos, K. and Arrighi, F. E. (1974). Repetitive DNA of Gallus domesticus and its cytological locations. Exp. Cell. Res. 83: 9.CrossRefGoogle ScholarPubMed
Stent, Gunther. S., (1971). Molecular Genetics. W. H. Freeman & Co. San Francisco.Google Scholar
Stino, F. K. R. and Washburn, K. W. (1973). Divergent selection under two nutritional environments for packed erythrocyte volume in Japanese quail. Genetics 74: 363.CrossRefGoogle ScholarPubMed
Stock, A. D. and Mengden, G. A. (1975). Chromosome banding pattern conservatism in birds and non-homology of chromosome banding patterns between birds, turtles snakes and amphibians. Chromosoma 50: 69.CrossRefGoogle Scholar
Stone, H. A., (1976). Immunogenetics and disease control in the chicken. Proc. 25th National Poultry Breeders RoundtablePoultry Breeders of America,Kansas City, Missouri. pp 87115.Google Scholar
Strong, C. F. and Jaap, R. G. (1977). Embryonic and early post-hatching growth patterns of dwarf broiler-type chickens. Poultry Sci. 56: 1595.CrossRefGoogle Scholar
Sumner, A. T., Evans, H. J. and Buckland, R. A. (1971). New technique for distinguishing between human chromosomes. Nature. 232: 31.Google ScholarPubMed
Takahashi, E. and Hirai, Y. (1974a). Karyotypes of three species of gallinaceous birds. Chromosome Inf. Service. 17: 9.Google Scholar
Takahashi, E. and Hiraj, Y. (1974b). The karyotype of the Japanese quail. Chromosome Inf. Service 17: 11.Google Scholar
Telloni, R. V., Jaap, R. G. and Fechheimer, N. S. (1975a). Part of the Z-chromosome translocated to a microchromosome in the chicken. Poultry Sci. 54: 1823.Google Scholar
Telloni, R. V., Jaap, R. G. and Fechheimer, N. S. (1975b). Effects of a Z to microchromosome translocation on growth and egg production in chickens. Poultry Sci. 54: 1823.Google Scholar
Telloni, R. V., Jaap, R. G. and Fechhiemer, N. S. (1977). Fertility embryo viability and hatchability of chickens having 23% of the Z translocated to a micro-chromosome. Poultry Sci. 56: 193.CrossRefGoogle ScholarPubMed
Thompson, R., (1977a). The estimation of heritability with unbalanced data I. Observations available on parents and offspring. Biometrics 33: 485.CrossRefGoogle Scholar
Thompson, R., (1977b). The estimation of heritability with unbalanced data II. Data available on more than two generations. Biometrics 33: 497.CrossRefGoogle Scholar
TurnerHelen, N. Helen, N. and Young, S. S. Y. (1969). Quantitative genetics in sheep breeding. Macmillan (Aust.) Melbourne332 pp.Google Scholar
Upp, C. W., (1934). Further data on the inheritance of dwarfism in fowls. Poult. Sci. 13: 157.CrossRefGoogle Scholar
Vaccaro, R. and Van Vleck, L. D. (1972). Genetics of economic traits in the Cornell randombred control population. Poult. Sci. 51: 1556.CrossRefGoogle Scholar
Waddington, C. H., (1952). Selection of the genetic basis of an acquired character. Nature 169: 278.CrossRefGoogle ScholarPubMed
Waddington, C. H., (1953). Genetic assimilation of an acquired character. Evolution 7: 118.CrossRefGoogle Scholar
Waldroup, P. W. and Hazen, K. R. (1976). A comparison of the daily energy needs of the normal and dwarf broiler breeder hen. Poultry Sci. 55: 1383.CrossRefGoogle ScholarPubMed
Wallace, B. (1975). The structure of gene control regions and its bearing on diverse aspects of population genetics. In: Population Genetics and Ecology (Eds. Karlin, S. and Nevo, E.) pp 499521.Google Scholar
Washburn, K. W., (1975a). Genetic basis of yolk cholesterol in chickens. Proc. 24th National Poultry Breeders Roundtable.Poultry Breeders of America.Kansas City, Missouri. pp 183223.Google Scholar
Washburn, K. W. (1975b). Selection at the gene product level. Proc. 24th National Poultry Breeders Roundtable. pp 39–94 Poultry Breeders of America.Kansas City, Missouri.Google Scholar
Washburn, K. W. and Nix, D. F. (1974). Genetic basis of yolk cholesterol content. Poultry Sci. 53; 109.CrossRefGoogle ScholarPubMed
Washburn, K. W., Marks, H. L. and Britton, W. A. (1976). Carcass composition and changes in body weights of lines selected for divergence in yolk cholestrol. Poultry Sci. 55: 1980.CrossRefGoogle Scholar
Washburn, K. W. and Marks, H. L. (1977). Changes in fitness traits associated with selection for divergence in yolk cholesterol concentration. Br. Poult. Sci. 18: 189.CrossRefGoogle ScholarPubMed
Watson, J. D., (1976). Molecular Biology of the Gene, 3rd Edition. W. A. Benjamin Inc.Google Scholar
Watson, J. D. and Crick, F. H. C. (1953). A structure for deoxyribosenucleic acid. Nature. 171: 737.CrossRefGoogle Scholar
Wellauer, P. K. and Dawid, I. B.x, (1977). Organisation of members within the repeating families of the genes coding for ribosomal RNA in Xenopus laevis and Drosophila melanogaster In: Recombinant Molecules: Impact on Science and Society. (Eds. Beers, R. F. Jr. and Bassett, E. G.) Raven Press N. Y. pp 379398.Google Scholar
Wilcox, F. H. (1966). Effect on performance of selection for high level of serum alkaline phosphatase in serum. Poultry Sci. 45: 776.CrossRefGoogle ScholarPubMed
Wilcox, F. H., Van Vleck, L. D. and Shaffner, C. S. (1962). Serum alkaline phosphatase and egg production Proc. XII World's Poultry Congress,Sydney pp 19.Google Scholar
Williamson, Bob., (1977). DNA insertions and gene structure. Nature 270; 295.CrossRefGoogle Scholar
Wooster, W. E., Fechheimer, N. S. and Jaap, R. G. (1977). Structural rearrangements of chromosome in the domestic chicken. experimental production by x-irradiation of spermatozoa. Can. J. Gene. Cytol. 19: 437.CrossRefGoogle ScholarPubMed
Wright, S. (1968). Evolution and the genetics of populations Vol. I Genetic and biometric foundations. University of Chicago Press, Chicago.Google Scholar
Wright, S. (1969b). The theoretical course of directional selection. Proc. 18th National Poultry Breeders Roundtable. pp 156–184 Poultry Breeders of America,Kansas City, Missouri.Google Scholar
Wright, S. (1969a). Evolution and the genetics of population Vol. 2 The theory of gene frequencies. University of Chicago Press.Google Scholar
Wright, S. (1977). Evolution and the genetics of populations Vol. 3 Experimental results and evolutionary deductions. University of Chicago Press.Google Scholar
Yamada, Y. (1974). Genetic resistance to Marek's disease (M.D.) and lymphoid leukosis (LL) in chickens. Proc. 1st World Congress on Genetics Applied to Livestock Production. Vol II: 191203 Madrid.Google Scholar
Yamada, Y., (1977). Evaluation of the culling variate used by breeders in actual selection. Genetics 86: 885.CrossRefGoogle ScholarPubMed
Yamada, Y., Watanabe, K, Ebisawa, S. and Futamura, K. (1972). Effect of the sex-linked dwarf gene on performance of broiler dams. Japanese Poult. Sci. 9: 286.CrossRefGoogle Scholar
Yamada, Y., Yokouchi, K. and Nishida, A. (1975). Selection index when genetic gains of individual traits are of primary concern. Japan J. Genetics 50: 33.CrossRefGoogle Scholar
Yoo, B. H., Sheldon, B. L. and Podger, R. N. (1976). Continuous light as an aid in selection for egg production. Proc. 1st Australasian Poultry and Stockfeed Convention pp 195199.Google Scholar
Zartman, D. L. and Smith, A. L. (1975). Triploidy and haploid-triploid mosaicism among chick embryos (Gallus domesticus) Cytogenet. Cell Genet. 15; 138.CrossRefGoogle ScholarPubMed