Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T09:09:19.472Z Has data issue: false hasContentIssue false

Transportation of Poultry

Published online by Cambridge University Press:  18 September 2007

B. M. Freeman
Affiliation:
Houghton Poultry Research Station, Houghton, Huntingdon, Cambs. PE17 2DA, England.
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, W. M., Hebert, C. N. and Smith, L. P. (1974). Deaths during and after transportation of pigs in Great Britain. Veterinary Record 94: 212.CrossRefGoogle ScholarPubMed
Arieli, A., Meltzer, A. and Berman, A. (1980). The thermoneutral temperature zone and seasonal acclimatisation in the hen. British Poultry Science 21: 471.CrossRefGoogle ScholarPubMed
Barott, H. G. and Pringle, E. M. (1941). Energy and gaseous metabolism of the hen as affected by temperature. Journal of Nutrition 22: 273.CrossRefGoogle Scholar
Barott, G. and Pringle, E. M. (1946). Energy and gaseous metabolism of the chicken from hatch to maturnity as affected by temperature. Journal of Nutrition 31: 35.CrossRefGoogle Scholar
Beattie, J. and Freeman, B. M. (1962). Gaseous metabolism in the domestic chicken. I. Oxygen consumption of broiler chickens from hatching to 100 gm body weight. British Poultry Science 3: 51.CrossRefGoogle Scholar
Benedict, F. G., Landauer, W. and Fox, E. L. (1932). The physiology of normal and frizzle fowl with special reference to the basal metabolism. Bulletin of the Storrs Agricultural Experiment Station 177.Google Scholar
Beuving, G. and Vonder, G. M. A. (1978). Effect of stressing factors on corticosterone levels in the plasma of laying hens. General and Comparative Endocrinology 35: 153.CrossRefGoogle ScholarPubMed
Braganza, A. F., Peterson, R. A. and Cenedella, R. J. (1973). The effects of heat and glucagon on the plasma glucose and free fatty acids of the domestic fowl. Poultry Science 52: 58.CrossRefGoogle ScholarPubMed
Briskey, E. J. and Lister, D. (1968). Influence of stress syndrome on chemical and physical characteristics of muscle post mortem. In: The Pork Industry: Problems and Progress, pp. 177186, Edit. Topel, D. G.Ames, Iowa State University Press.Google Scholar
Burger, R. E. and Lorenz, F. W. (1960a). Pharmacologically induced resistance to heat shock. 1. Rauwolfoids and chlorpromazine. Poultry Science 39: 468.CrossRefGoogle Scholar
Burger, R. E. and Lorenz, F. W. (1960b). Pharmacologically induced resistance to heat shock. 2. Modifications of activity of the central nervous and endocrine systems. Poultry Science 39: 477.CrossRefGoogle Scholar
Burger, R. E. and Lorenz, F. W. (1960c). Pharmacologically induced resistance to heat shock. 3. Effects of rauwolfoids and chlorpromazine on heart rate. Poultry Science 39: 981.CrossRefGoogle Scholar
Burger, R. E., Matre, N. S. and Lorenz, F. W. (1957). Mechanism of increased resistance to heat stress by tranquilizing drugs. Poultry Science 36: 1107.Google Scholar
Candland, D. K., Taylor, D. B., Dresdale, L., Leiphart, J. M. and Solow, S. P. (1969). Heart rate, aggression and dominance in the domestic chicken. Journal of Comparative and Physiological Psychology 67: 70.CrossRefGoogle ScholarPubMed
Champion, L. R., Zindel, H. C., Ringer, R. K. and Wolford, J. H. (1966). The performance of started pullets treated with SU-9064 (Pacitran) prior to transport. Poultry Science 45: 1359.CrossRefGoogle Scholar
Constantin, N., Raszyk, J., Holub, A. and KotrbÁČek, V. (1977). Effect of adrenocorticotrophic hormone and starvation on adrenocortical function in chickens during the early posthatching period. Acta Veterinaria. Brno 46: 87.Google Scholar
Dardiri, A. H., Zaki, O. and Reid, W. M. (1955). Mortality due to omphalitis following air shipment of baby chicks. Poultry Science 34: 327.CrossRefGoogle Scholar
Davis, R. H., Hassan, O. E. M. and Sykes, A. H. (1973). Energy utilization in the laying hen in relation to ambient temperature. Journal of Agricultural Science, Cambridge 81: 173.CrossRefGoogle Scholar
Davison, T. F. and Lickiss, P. A. (1979). The effect of cold stress on the fasted, water-deprived, neonate chicken (Gallus domesticus). Journal of Thermal Biology 4: 113.CrossRefGoogle Scholar
Drury, L. N. and Siegel, H. S. (1966). Air velocity and heat tolerance of young chickens. Transactions of the American Society of Agricultural Engineers 9: 583.Google Scholar
Edens, F. W. (1978). Adrenal cortical insufficiency in young chickens exposed to a high ambient temperature. Poultry Science 57: 1746.CrossRefGoogle ScholarPubMed
Edens, F. W. and Siegel, H. S. (1975). Adrenal responses in high and low ACTH response lines of chicken during acute heat stress. General and Comparative Endocrinology 25: 64.CrossRefGoogle ScholarPubMed
Ehinger, F. (1977). The influence of starvation and transportation on the carcass quality of broilers. In: The Quality of Poultry Meat, pp. 117124. Edit. Scholtyssek, S.Grub, European Poultry Federation.Google Scholar
El-Halawani, M. E., Waibel, P. E., Appel, J. R. and Good, A. L. (1973). Effects of temperature stress on catecholamines and corticosterone of male turkeys. American Journal of Physiology 224: 384.CrossRefGoogle ScholarPubMed
Eskeland, B. and Blom, A. K. (1979). Plasma corticosteroid levels in laying hens. Acta Veterinaria Scandinavica 20: 270.CrossRefGoogle ScholarPubMed
Etches, R. J. (1976). A radioimmunoassay for corticosterone and its application to the measurement of stress in poultry. Steroids, 28: 763.CrossRefGoogle Scholar
Farrell, D. J. (1975). A comparison of the energy metabolism of two breeds of hens and their cross using respiratory calorimetry. British Poultry Science 16: 103.CrossRefGoogle Scholar
Farrell, D. J. and Swain, S. (1977a). Effects of temperature treatment on the heat production of starving chickens. British Poultry Science 18: 725.CrossRefGoogle ScholarPubMed
Farrell, D. J. and Swain, S. (1977b). Effects of temperature treatments on the energy and nitrogen metabolism of fed chickens. British Poultry Science 18: 735.CrossRefGoogle ScholarPubMed
Freeman, B. M. (1963). The gaseous metabolism of the domestic chicken. III. The oxygen requirements of the chicken during the period of rapid growth. British Poultry Science 4: 169.CrossRefGoogle Scholar
Freeman, B. M. (1971). Stress of the domestic fowl: a physiological appraisal. World's Poultry Science Journal 27: 263.CrossRefGoogle ScholarPubMed
Freeman, B. M. (1976). Stress and the domestic fowl: a physiological reappraisal. World's Poultry Science Journal 32: 249.CrossRefGoogle Scholar
Freeman, B. M. (1982). Stress non-responsiveness in the newly hatched fowl. Comparative Biochemistry and Physiology 72A: 251.CrossRefGoogle Scholar
Freeman, B. M. (1984). Some responses of the domestic fowl to environmental temperature. Archiv für Experimentelle Veterinärmedizin (in press).Google Scholar
Freeman, B. M. and Flack, I. H. (1980). Effect of handling on plasma corticosterone concentrations in the immature domestic fowl. Comparative Biochemistry and Physiology 66A: 77.CrossRefGoogle Scholar
Freeman, B. M. and Flack, I. H. (1981). The sensitivity of the newly hatched fowl to corticotrophin. Comparative Biochemistry and Physiology 70A: 257.CrossRefGoogle Scholar
Freeman, B. M. and Manning, A. C. C. (1976). Mediation of glucagon in the response of the domestic fowl to stress. Comparative Biochemistry and Physiology 53A: 169.CrossRefGoogle Scholar
Freeman, B. M. and Manning, A. C. C. (1978). Short-term stressor effects of reserpine. British Poultry Science 19: 623.CrossRefGoogle ScholarPubMed
Freeman, B. M., Manning, A. C. C. and Flack, I. H. (1980). Short-term stressor effects of food withdrawal on the immature fowl. Comparative Biochemistry and Physiology 67A: 569.CrossRefGoogle Scholar
Freeman, B. M., Manning, A. C. C. and Flack, I. H. (1983). Adrenal cortical activity in the domestic fowl, Gallus domesticus following withdrawal of food and water. Comparative Biochemistry and Physiology 74A: 639.CrossRefGoogle Scholar
Freeman, B. M., Kettlewell, P. J., Manning, A. C. C. and Berry, P. S. (1984). The stress of transportation of broilers, Veterinary Record ( press).CrossRefGoogle Scholar
Giaja, A. (1929). Sur la thermorégulation des oiseaux partiellement plumés. Compte Rendu des Séances de la Société de Biologie, Paris 100: 1225.Google Scholar
Giaja, A. and Males, B. (1928). Sur la valeur du métabolisme de base de quelques animaux en fonction de surface. Annales de Physiologie et de Physicochemie biologique 4: 874.Google Scholar
Glick, B. and Subba Rao, D. S. V. (1970). The immunosuppressive action of cortisone during the pre-induction phase of antibody formation. 14th World's Poultry Science Congress, Madrid 2: 365.Google Scholar
Gross, W. B. (1972). Effects of social stress on occurrence of Marek's disease in chickens. American Journal of Veterinary Research 33: 2275.Google ScholarPubMed
Gross, W. B. and Colmano, G. (1969). The effect of social isolation on resistance to some infectious diseases. Poultry Science 48: 514.CrossRefGoogle ScholarPubMed
Gross, W. B. and Colmano, G. (1971). Effects of infectious agents on chickens selected for plasma corticosterone response to social stress. Poultry Science 50: 1213.CrossRefGoogle ScholarPubMed
Gross, W. B. and Siegel, H. S. (1973). Effect of social stress and steriods on antibody production. Avian Diseases 17: 807.CrossRefGoogle Scholar
Hagan, A. A. and Heath, J. E. (1976). Metabolic responses of White Pekin ducks to ambient temperature. Poultry Science 55: 1899.CrossRefGoogle ScholarPubMed
Hails, M. R. (1978). Transport stress in animals: a review. Animal Regulation Studies 1: 289.Google Scholar
Halliday, W. G., Ross, J. G., Christie, G. and Jones, R. M. (1977). Effect of transportation on blood metabolites in broilers. British Poultry Science 18: 657.CrossRefGoogle ScholarPubMed
Hill, J. A. (1983). Indicators of stress in poultry. World's Poultry Science Journal 39: 24.CrossRefGoogle Scholar
Hoffman, E. and Shaffner, C. S. (1950). Thyroid weight and function as influenced by environmental temperature. Poultry Science 29: 365.CrossRefGoogle Scholar
Howard, B. R. (1971). Posture and heart rate in the domestic hen. British Poultry Science 12: 279.CrossRefGoogle ScholarPubMed
Jensen, J. F. (1976). The influence of transportation on slaughter quality of broilers. 5th European Poultry Conference,Malta 698.Google Scholar
JurÁni, M., Nvota, J., VÝboh, P. and Boda, K. (1980). Effect of stress on plasma catecholamines in domestic birds. In: Catecholamines and Stress: Recent Advances, pp. 285290. Edit. Usdin, M., Kvetňanský, R. and Kopin, I. J.Amsterdam, Elsevier North Holland Inc.Google Scholar
Juszkiewicz, T., Kafel, S., Madejski, Z.Stefaniak, B. and Gorzelewska, K. (1964). Pathophysiology of the pituitaryadrenal axis in birds. I. Effects of ACTH, shaking and infection with Salmonella gallinarum on some stress indicators. Polksie Archiwum Weterynaryjne 8: 369.Google Scholar
Kassim, H. and Sykes, A. H. (1982). The respiratory responses of the fowl to hot climates. Journal of Experimental Biology 97: 301.CrossRefGoogle ScholarPubMed
Kettlewell, P. J. and Turner, M. J. B. (1983). A review of broiler chicken catching and transportation systems. Journal of Agricultural Engineering Research (in press).Google Scholar
Khaskin, V. V. (1960). Development of thermoregulation in the domestic duck. Fiziologiĉheskii Zhurnal SSSR 46: 1489.Google ScholarPubMed
Klandorf, H., Sharp, P. J. and Sterling, R. (1978). Induction of thyroxine and triiodothyronine release by thyrotropin releasing hormone in the hen. General and Comparative Endocrinology 34: 377.CrossRefGoogle ScholarPubMed
Kohne, H. J., Boone, M. A. and Jones, J. E. (1973). The effect of feed consumption on the survival time of adult turkey hens under conditions of acute thermal stress. Poultry Science 52: 1780.CrossRefGoogle ScholarPubMed
KotrbÁČek, V. (1973). Age-dependent changes in O2 consumption and CO2 production of Pekin ducks from hatch to 60 days of age at different ambient temperatures. Acta Veterinaria, Brno 42: 15.Google Scholar
KotrbÁČek,, V. (1977). Age-dependent changes in the energy metabolism and body temperature of turkeys. Acta Veterinaria, Brno 46: 71.Google Scholar
KÜhn, E. R. and Nouwen, E. J. (1978). Serum levels of triiodothyronine and thyroxine in the domestic fowl following mild cold exposure and injection of synthetic thyrotropin-releasing hormone. General and Comparative Endocrinology 34: 336.CrossRefGoogle ScholarPubMed
Lasiewski, R. C. and Dawson, W. R. (1967). A re-examination of the relation between standard metabolic rate and body weight in birds. Condor 69: 13.CrossRefGoogle Scholar
Lundy, H. (1969). A review of the effects of temperature, humidity, turning and gaseous environment in the incubator on the hatchability of the hen's egg. In: The Fertility and Hatchability of the Hen's Egg, pp. 143176. Edit. Carter, T. C. and Freeman, B. M.Edinburgh, Oliver and Boyd.Google Scholar
Lundy, H., Macleod, M. G. and Jewitt, T. R. (1978). An automated multi-calorimeter system: preliminary experiments on laying hens. British Poultry Science 19: 173.CrossRefGoogle ScholarPubMed
Macleod, M. G. and Shannon, D. W. F. (1978). Effects of food intake regulation on the energy metabolism of laying hens. British Poultry Science 19: 349.CrossRefGoogle Scholar
Macleod, M. G., Tullett, S. G. and Jewitt, T. R. (1979). Effects of food intake regulation on the energy metabolism of hens and cockerels of a layer strain. British Poultry Science 20: 521.CrossRefGoogle ScholarPubMed
Macleod, M. G., Tullett, S. G. and Jewitt, T. R. (1980a). Circadian variation in the metabolic rate of growing chickens and laying hens of a broiler strain. British Poultry Science 21: 155.CrossRefGoogle ScholarPubMed
Macleod, M. G., Tullett, S. G. and Jewitt, T. R. (1980b). Effect of ambient temperature on the heat production of growing turkeys. In: Energy Metabolism pp. 257261. Edit. Mount, L. E.London, Butterworth.CrossRefGoogle Scholar
Mayes, F. J. (1980). The incidence of bruising in broiler flocks. British Poultry Science 21: 505.CrossRefGoogle Scholar
McCormick, C. C., Garlich, J. D. and Edens, F. W. (1979). Fasting and diet affect the tolerance of young chickens to acute stress. Journal of Nutrition 109: 1797.CrossRefGoogle Scholar
Mcnaughton, J. L., Deaton, J. W. and Reece, F. N. (1978). Effect of sucrose in the initial drinking water of broiler chicks on mortality and growth. Poultry Science 57: 985.CrossRefGoogle Scholar
Meltzer, A., Goodman, G. and Fistool, J. (1982). Thermoneutral zone and resting metabolic rate of growing White Leghorn-type chickens. British Poultry Science 23: 383.CrossRefGoogle ScholarPubMed
Misson, B. H. (1976). The effects of temperature and relative humidity on the thermoregulatory responses of grouped and isolated neonate chicks. Journal of Agricultural Science, Cambridge 86: 35.CrossRefGoogle Scholar
Misson, B. H. (1977). The relationships between age, mass, body temperature and metabolic rate in the neonatal fowl (Gallus domesticus). Journal of Thermal Biology 2: 107.CrossRefGoogle Scholar
Mitchell, H. H. and Haines, W. T. (1927). The critical temperature of the chicken. Journal of Agricultural Research 34: 549.Google Scholar
Moreng, R. E. and Shaffner, C. S. (1951). Lethal internal temperatures for the chicken, from fertile egg to mature bird. Poultry Science 30: 255.CrossRefGoogle Scholar
Murphy, L. B. (1978). A review of animal welfare and intensive animal production. Queensland Department of Primary Industries.Google Scholar
Nichelmann, M., Ellerkamp, S., Herntrich, I. and Lyhs, L. (1976). Untersuchungen zum Wärmehaushalt von Puten. I. Wärmeproduktion. Monatshefte für Veterinärmedizin 31: 213.Google Scholar
Nichelmann, M., Lyhs, L., Koch, S., Michler, I. and Grosskopf, C. (1977). Zur biologisch optimalen Temperatur bei Moschusenten. Monatshefte für Veterinärmedizin 32: 349.Google Scholar
Nir, I., Yam, D. and Perek, M. (1975). Effect of stress on the corticosterone content of the blood plasma and adrenal gland of intact and bursectomized Gallus domesticus. Poultry Science 54: 2101.CrossRefGoogle ScholarPubMed
O'Neill, S. J. B., Balnave, D. and Jackson, N. (1971). The influence of feathering and environmental temperature on the heat production and efficiency of utilization of metabolizable energy by the mature cockerel. Journal of Agricultural Science, Cambridge 77: 293.CrossRefGoogle Scholar
Ota, H. and Mcnally, E. H. (1961). Poultry respiration calorimetric studies of laying hens: single comb White Leghorns, Rhode Island Reds and New Hampshire x Cornish cross. Agricultural Research Service, U.S. Department of Agriculture, 4243.Google Scholar
Parker, E. L. (1969a). Product report: Pacitran (SU 9064)-metoreserpate hydrochloride)-tranquillizer for specific stresses in poultry. Veterinarian, Oxford 6: 7.Google ScholarPubMed
Parker, E. L. (1969b). Metoserpate hydrochloride-tranquillizer for specific stresses in poultry. Feedstuffs. Minneapolis 41(2): 21.Google Scholar
Perek, M. and Kendler, J. (1963). Ascorbic acid as a dietary supplement for White Leghorn hens under conditions of climatic stress. British Poultry Science 4: 191.CrossRefGoogle Scholar
Poczopko, P. (1970). The effect of thermal environment on metabolic rate in goslings. In: Energy Metabolism of Farm Animals, pp. 225228. Edit. Schürch, A. and Wenk, C.Zurich, Juris Druck and Verlag.Google Scholar
Proudfoot, F. G. (1969). The handling and storage of hatching eggs. In: The Fertility and Hatchability of the Hen's Egg, pp. 127141. Edit. Carter, T. C. and Freeman, B. M.Edinburgh, Oliver and Boyd.Google Scholar
Pym, R. A. E. and Farrell, D. J. (1977). A comparison of the energy and nitrogen metabolism of broilers selected for increased growth rate, food consumption and conversion of food to gain. British Poultry Science 18: 411.CrossRefGoogle ScholarPubMed
Randall, W. C. (1943). Factors influencing the temperature regulation of birds. American Journal of Physiology 139: 56.CrossRefGoogle Scholar
Richards, S. A. (1976). Evaporative water loss in domestic fowls and its partition in relation to ambient temperature. Journal of Agricultural Science, Cambridge 87: 527.CrossRefGoogle Scholar
Romanoff, A. L. (1967). Biochemistry of the Avian Embryo. New York, John Wiley and Sons.Google Scholar
Romijn, C. and Lokhorst, W. (1961). Climate and poultry. Heat regulation in the fowl. Tijdschrift voor Diergeneeskunde 86: 153.Google Scholar
Romijn, C. and Vreugdenhil, E. L. (1969). Energy balance and heat regulation in the White Leghorn fowl. Netherlands Journal of Veterinary Science 2: 32.Google Scholar
Rose, M. E. (1970). Immunity to coccidiosis: effect of betamethasone treatment of fowls on Eimeria mivati infection. Parasitology 60: 137.CrossRefGoogle ScholarPubMed
Saleh, S. Y. and Jaksch, W. (1977). The effect of stress factors on blood leucocytic count, glucose and corticoids in chickens. Zentralblatt für Veterinärmedizin 24 1: 220.CrossRefGoogle ScholarPubMed
Schmeling, S. K. and Nockels, C. F. (1978). Effects of age, sex and ascorbic acid ingestion on chicken plasma corticosterone levels. Poultry Science 57: 527.CrossRefGoogle ScholarPubMed
Scholtyssek, S. and Ehinger, F. (1976). Transporteinflüsse auf Broiler und deren Schlachtkorper. Archiv für Geflügelkunde 40: 27.Google Scholar
Scholtyssek, S., Ehinger, F. and Loman, F. (1976). Einfluss von Transport und Nuchterung auf die Schlachtkorperqualitat von Broilern. 5th European Poultry Conference,Malta 725.Google Scholar
Scott, T. R., Satterlee, D. G. and Jacobs-Perry, L. A. (1983). Circulating corticosterone responses of feed and water deprived broilers and Japanese quail. Poultry Science 62: 290.CrossRefGoogle ScholarPubMed
Seligmann, R. and Lapinsky, Z. (1970). Salmonella findings in poultry as related to conditions prevailing during transportation from the farm to the processing plant. Refuah Veterinarith 27: 7.Google Scholar
Siegel, H. S. (1971). Adrenals, stress and the environment. World's Poultry Science Journal 27: 327.CrossRefGoogle Scholar
Siregar, A. P. and Farrell, D. J. (1980a). A comparison of the energy and nitrogen metabolism of fed ducklings and chickens. British Poultry Science 21: 213.CrossRefGoogle ScholarPubMed
Siregar, A. P. and Farrell, D. J. (1980b). A comparison of the energy and nitrogen metabolism of starving ducklings and chickens. British Poultry Science 21: 203.CrossRefGoogle ScholarPubMed
Sturkie, P. D. (1946). Tolerance of adult chickens to hypothermia. American Journal of Physiology 147: 531.CrossRefGoogle ScholarPubMed
Sturkie, P. D., Durfee, W. K. and Sheahan, M. (1958). Effects of reserpine on the fowl. American Journal of Physiology 194: 184.CrossRefGoogle ScholarPubMed
Subaschandran, D. V. and Balloun, S. L. (1967). Acetyl-p-aminophenol and vitamin C in heat stressed birds. Poultry Science 46: 1073.CrossRefGoogle ScholarPubMed
Subba Rao, D. S. V. and Glick, B. (1970). Immunosuppressive action of heat in chickens. Proceedings of the Society for Experimental Biology and Medicine 133: 445.CrossRefGoogle Scholar
Sykes, A. H. (1978). Vitamin C for poultry—some recent research. Roche Symposium,London.Google Scholar
Tasaki, I. and Sasa, Y. (1970). Energy metabolism in laying hens, In: Energy Metabolism of Farm Animals, pp. 197200. Edit. Schürch, A. and Wenk, C.Zurick, Juris Druck and Verlag.Google Scholar
Thaxton, J. P. and Parkhurst, C. R. (1976). Growth, efficiency and livability of newly hatched broilers as influenced by hydration and intake of sucrose. Poultry Science 55: 2275.CrossRefGoogle Scholar
Thaxton, P. (1978). Influence of temperature on the immune response of birds. Poultry Science 57: 1430.CrossRefGoogle ScholarPubMed
Thaxton, P. and Siegel, H. S. (1970). Immunodepression in young chickens by high environmental temperature. Poultry Science 49: 202.CrossRefGoogle ScholarPubMed
Thaxton, P. and Siegel, H. S. (1973). Modification of high temperature and ACTH-induced immunosuppression by metyrapone. Poultry Science 52: 618.CrossRefGoogle ScholarPubMed
Thaxton, P., Sadler, C. R. and Glick, B. (1968). Immune responses of chickens following heat exposure or injections with ACTH. Poultry Science 47: 264.CrossRefGoogle ScholarPubMed
Thornton, P. A. (1962). Tyrosine, protein and ascorbic acid effects on egg shell thickness from hens subjected to heat stress. Poultry Science 41: 1832.CrossRefGoogle Scholar
Tullett, S. G., Macleod, M. G. and Jewitt, T. R. (1980). The effects of partial defeathering on energy metabolism in the laying fowl. British Poultry Science 21: 241.CrossRefGoogle ScholarPubMed
van Kampen, M. (1971). Some aspects of thermoregulation in the White Leghorn fowl. International Journal of Biometeorology 15: 244.CrossRefGoogle ScholarPubMed
van Kampen, M. (1977). Effects of feed restriction on heat production, body temperature and respiratory evaporation in the White Leghorn hen on a “tropical” day. Tijdschrift voor Diergeneeskunde 102: 504.Google ScholarPubMed
van Kampen, M. and Romijn, C. (1970). Energy balance and heat regulation in the White Leghorn fowl. In: Energy Metabolism of Farm Animals, pp. 213216. Edit. Schürch, A. and Wenk, C.Zurich, Juris Druck and Verlag.Google Scholar
van Kampen, M., Mitchell, B. W. and Siegel, H. S. (1978). Influence of sudden temperature changes on oxygen consumption and heart rate in chickens in light and dark environments. Journal of Agricultural Science, Cambridge 90: 605.CrossRefGoogle Scholar
Waring, J. J. and Brown, W. O. (1967). Calorimetric studies on the utilization of dietary energy by the laying White Leghorn hen in relation to plane of nutrition and environmental temperature. Journal of Agricultural Science, Cambridge 68: 149.CrossRefGoogle Scholar
Wathes, C. M. and Clark, J. A. (1981). Sensible heat transfer from the fowl: thermal resistance to the pelt. British Poultry Science 22: 175.CrossRefGoogle Scholar
Weiss, M. S. (1960). The effect of continuous treatment with reserpine on body temperature, respiratory-cardiovascular functions and heat tolerance of the hen. Poultry Science 39: 366.CrossRefGoogle Scholar
Weiss, J. and Brand, J. H. (1974). Untersuchungen uber die NNR-Funktion bei landwirtschaftlichen Nutztieren mit Hilfe der Cortisol und Cotticosteronbestimmung nach dem Prinzip der konkurrierenden Eiwessbindungsanalyse. 3. Mitteilung: Untersuchungen am Geflügel. Zentralblatt für Veterinärmedizin 21A: 225.Google Scholar
Wildenhahn, V., Graul, L., Lyhs, L. and Lohse, W. (1976). Det Einfluss von Geräuschen auf physiologische Funktionen beim Huhn. 1. Mitteilung: Der Einfluss erstmalig einwirkender stärkerer Geräusche auf den II-OHKS-Spiegel von Broilern und weissen Leghornhennen. Archiv für Experimentalle Veterinärmedizin 30: 633.Google Scholar
Wodzicka-Tomaszewska, M., Stelmasiak, T. and Cumming, R. B. (1982). Stress of immobilisation, with food and water deprivation, causes changes in plasma concentration of triiodothyronine, thyroxine and corticosterone in poultry. Australian Journal of Biological Sciences 35: 393.CrossRefGoogle ScholarPubMed
Wolford, J. H. and Ringer, R. K. (1962). Adrenal weight, adrenal ascorbic acid, adrenal cholesterol and differential leucocyte counts as physiological indicators of “stressor” agents in laying hens. Poultry Science 41: 1521.CrossRefGoogle Scholar
Zachaiasen, R. D. and Newcomer, W. S. (1974). Phenylethanolamine-N-methyl transferase activity in the avian adrenal following immobilization or adrenocorticotropin. General and Comparative Endocrinology 23: 193.CrossRefGoogle Scholar