Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T14:32:11.418Z Has data issue: false hasContentIssue false

Confocal image analysis of spatial variations in immunocytochemically identified calmodulin during pollen hydration, germination and pollen tube tip growth in Nicotiana tabacum L.

Published online by Cambridge University Press:  26 September 2008

Uday K. Tirlapur
Affiliation:
Dipartimento di Biologia Ambientale, Università di Siena, and Dipartimento Science Ambientale, Università Della Tuscia, Viterbo, Italy
Monica Scali
Affiliation:
Dipartimento di Biologia Ambientale, Università di Siena, and Dipartimento Science Ambientale, Università Della Tuscia, Viterbo, Italy
Alessandra Moscatelli
Affiliation:
Dipartimento di Biologia Ambientale, Università di Siena, and Dipartimento Science Ambientale, Università Della Tuscia, Viterbo, Italy
Cecilia Del Casino
Affiliation:
Dipartimento di Biologia Ambientale, Università di Siena, and Dipartimento Science Ambientale, Università Della Tuscia, Viterbo, Italy
Gianpiero Cai
Affiliation:
Dipartimento di Biologia Ambientale, Università di Siena, and Dipartimento Science Ambientale, Università Della Tuscia, Viterbo, Italy
Antonio Tiezzi
Affiliation:
Dipartimento di Biologia Ambientale, Università di Siena, and Dipartimento Science Ambientale, Università Della Tuscia, Viterbo, Italy
Mauro Cresti*
Affiliation:
Dipartimento di Biologia Ambientale, Università di Siena, and Dipartimento Science Ambientale, Università Della Tuscia, Viterbo, Italy
*
M. Cresti, Dipartimento di Biologia Ambientale, Università di Siena, Via P.A. Mattioli 4, Sienna, Italy. Telephone: 0039 577 298854. Fax: 0039 577 298860.

Summary

Using monoclonal anti-calmodulin antibodies in conjunction with confocal scanning laser microscopy we have analysed the spatial variations in the distribution pattern of calmodulin (CaM) during the sequential events of pollen hydration, germination and tube growth in Nicotiana tabacum. These immunocytochemical observations have been complemented by immunochemical studies wherein the anti-calmodulin antibody raised against pea CaM recognises a polypeptide of c. 18 kDa in the pollen extracts. Digitisation of confocally acquired optical sections of immunofluorescence images reveals that in hydrated pollen a high level of CaM is consistently present in the region of the germinal apertures. Subsequently, with the onset of germination a high CaM concentration was found associated with the plasma membrane of the germination bubble and in the cytoplasm in its vicinity, while in the vegetative cytoplasm a weak diffuse and intense punctate signal was registered. CaM immunostain was also detected in association with the plasma membrane of the tube tips in both short and long pollen tubes. Furthermore, the cytosol of the tubes invariably manifested an apically focused CaM gradient. We were, however, unable to detect any vacuolar association of CaM in the older regions of the pollen tubes. Although punctate immunostain was obvious across the pollen tube numerous punctate structures were invariably present in the extreme tip. The possible implications of these findings in development of cell polarity, polarised growth, maintenance of calcium homeostasis and CaM interactions with other mechanochemical motor proteins in effecting propulsion of organelles during pollen hydration, germination and pollen tube growth are discussed.

Type
Commentary
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bershadsky, A.D. & Vasiliev, J.M. (1988). Cytoskeleton. New York: Plenum Press.CrossRefGoogle Scholar
Biro, R.L., Daye, S., Serlin, B.S., Terry, E.M., Datta, N., Sopory, S.K. & Roux, S.J. (1984). Characterization of oat calmodulin and radio immuoassay of its subcellular distribution. Plant Physiol. 75, 382–6.CrossRefGoogle Scholar
Brewbaker, J.L. & Kwack, B.H. (1963). The essential role of calcium in pollen germination and pollen tube growth. Am. J. Bot. 50, 859–65.CrossRefGoogle Scholar
Brockerhoff, S.E. & Davis, T.N. (1992). Calmodulin concentrates at regions of cell growth in Saccharomyces cerevisiae. J. Cell Biol. 118, 619–29.CrossRefGoogle ScholarPubMed
Cai, G.Bartalesi, A., Del Casino, C., Moscatelli, A., Tiezzi, A. & Cresti, M. (1993). The kinesin immunoreactive homologue from Nicotiana tabacum pollen tube: biochemical properties and subcellular localization. Planta. 191, 496506.CrossRefGoogle Scholar
Condeelis, J.S. (1974). The identification of F-actin in the pollen tube and protoplast of Amaryllis belladonna. Exp. Cell Res. 88, 435–9.CrossRefGoogle ScholarPubMed
Cyr, R.J. (1991). Calcium/calmodulin affects microtubule stability in lysed protoplasts. J. Cell Sci. 100, 311–17.CrossRefGoogle Scholar
Dauwalder, M., Roux, S.J. & Hardison, L. (1986). Distribution of calmodulin in pea seedling: immunocytochemical localization in plumules and root apices. Planta 168, 461–70.CrossRefGoogle ScholarPubMed
Evans, D.E., Briars, S.A. & Williams, L.E. (1991). Active calcium transport by plant cell membranes. J. Exp. Bot. 42, 285303.CrossRefGoogle Scholar
Franke, W.W., Herth, W., Van Der Woude, W.J. & Morré, D.J. (1972). Tubular and filamentous structures in pollen tubes: Possible involvement as guide elements in protoplasmic streaming and vectorial migration of secretory vesicles. Planta 105, 317–41.CrossRefGoogle ScholarPubMed
Hausser, I., Herth, W. & Reiss, H.-D. (1984). Calmodulin in tip-growing plant cells, visualized by fluorescing calmodulin-binding phenothiazines. Planta 162, 33–9.CrossRefGoogle ScholarPubMed
Herth, W., Reiss, H.-D. & Hartmann, E. (1990). Role of calcium ions in tip growth of pollen tubes and moss protonema cells. In Tip Growth in Plant and Fungal Cells, ed. Heath, IB, pp. 91113. San Diego: Academic Press.CrossRefGoogle Scholar
Heslop-Harrison, J. & Heslop-Harrison, Y. (1989 a). Conformation and movement of the vegetative nucleus of the angiosperm pollen tube: association with the actin cytoskeleton. J. Cell Sci. 93, 299308.CrossRefGoogle Scholar
Heslop-Harrison, J. & Heslop-Harrison, Y. (1989 b). Actomyosin and movement in the angiosperm pollen tube: an interpretation of some recent results. Sex. Plant Reprod. 2, 199207.CrossRefGoogle Scholar
Heslop-Harrison, J. & Heslop-Harrison, Y. (1989 c). Myosin associated with the surface of organelles, vegetative nuclei and generative cells in angiosperm pollen grains and tubes. J. Cell Sci. 94, 319–25.CrossRefGoogle Scholar
Heslop-Harrison, J. & Heslop-Harrison, Y. (1989 d). Cytochalasin effects on structure and movement in the pollen tube of Iris. Sex. Plant Reprod. 2, 2737.CrossRefGoogle Scholar
Heslop-Harrison, J. & Heslop-Harrison, Y. (1990). Dynamic aspects of apical zonation in the angiosperm pollen tube. Sex. Plant Reprod. 3, 187–94.CrossRefGoogle Scholar
Hulen, D., Baron, A., Salisbury, J. & Clarke, M. (1991). Production and specificity of monoclonal antibodies against calmodulin from Dictyostelium discoideum. Cell Motil. Cytoskel. 18, 113–22.CrossRefGoogle ScholarPubMed
Jablonsky, P.P., Grolig, F., Perkin, J.L. & Williamson, R.E. (1991). Properties of monoclonal antibodies to plant calmodulin. Plant Sci. 76, 175–84.CrossRefGoogle Scholar
Kohno, T., Chaen, S. & Shimmen, T. (1990). Characterization of the translocator associated with pollen tube organelles. Protoplasma 161, 75–7.CrossRefGoogle Scholar
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5.CrossRefGoogle ScholarPubMed
Lancelle, S.A. & Hepler, P.K. (1989). Cytochalasin-induced ultrastructural alteration in Nicotiana pollen tubes. Protoplasma (Suppl. 2), 6775.Google Scholar
Mascarenhas, J.P. & Lafountain, J. (1972). Protoplasmic streaming, cytochalasin B, and growth of the pollen tube. Tissue Cell. 4, 1114.CrossRefGoogle ScholarPubMed
Miller, D.D., Callaham, D.A., Gross, D.J. & Hepler, P.K. (1992). Free Ca2+ gradient in growing pollen tubes of Lilium. J. Cell Sci. 101, 712.CrossRefGoogle Scholar
Nelson, G.A., Andrews, M.L. & Karnovsky, M.J. (1982). Participation of calmodulin in immunoglobulin capping. J. Cell Biol. 95, 771–80.CrossRefGoogle ScholarPubMed
Obermeyer, G. & Weisenseel, M.H. (1991). Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes. Eur. J. Cell Biol. 56, 319–27.Google ScholarPubMed
Picton, J.M. & Steer, M.W. (1981). Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantia using cytochalasin D. J. Cell Sci. 49, 261–72.CrossRefGoogle ScholarPubMed
Picton, J.M. & Steer, M.W. (1985). The effects of ruthenium red, lanthanum, fluorescein isothiocyanate and trifluoperazine on vesicle transport, vesicle fusion and tip extension in pollen tubes. Planta 163, 20–6.CrossRefGoogle ScholarPubMed
Pierson, E.S. & Cresti, M. (1992). Cytoskeleton and cytoplasmic organization of pollen and pollen tubes. Int. Rev. Cytol. 140, 73125.CrossRefGoogle Scholar
Polito, V.S. (1983). Membrane-associated calcium during pollen grain germination: a microfluorometric analysis. Protoplasma 117, 226–32.CrossRefGoogle Scholar
Rathore, K.S., Cork, R.J. & Robinson, K.R. (1991). A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Dev. Biol. 148, 612–19.CrossRefGoogle ScholarPubMed
Reiss, H.-D. & Herth, W. (1979). Calcium gradients in tip growing plant cells visualized by CTC-fluorescence. Planta 146, 615–21.CrossRefGoogle Scholar
Reiss, H.-D., Herth, W., Schnepf, E. & Nobiling, R. (1983). The tip-to-base calcium gradient in pollen tubes of Lilium longiflorum measured by proton-induced X-ray emission (PIXE). Protoplasma 115, 153–9.CrossRefGoogle Scholar
Sloat, B.F., Adams, A. & Pringle, J.R. (1981). Roles of the CDC24 gene product in cellular morphogenesis during the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 89, 395405.CrossRefGoogle ScholarPubMed
Staiger, C.J. & Schliwa, M. (1987). Actin localization and function in higher plants. Protoplasma 141, 112.CrossRefGoogle Scholar
Steer, M.W. & Steer, J.M. (1989). Pollen tube tip growth. New Phytol. 111, 323–58.CrossRefGoogle ScholarPubMed
Sun, G.-H., Ohya, Y. & Anraku, Y. (1992). Yeast calmodulin localizes to sites of cell growth. Protoplasma 166, 110–13.CrossRefGoogle Scholar
Tang, X.J., Lancelle, S.A. & Hepler, P.K. (1989 a). Fluorescence microscopic localization of actin in pollen tubes: comparison of actin antibody and phalloidin staining. Cell Motil. Cytoskel. 12, 216–24.CrossRefGoogle ScholarPubMed
Tang, X.J., Hepler, P.K. & Scordilis, S.P. (1989 b). Immunochemical and immunocytochemical identification of a myosin heavy chain polypeptide in Nicotiana pollen tubes. J. Cell Sci. 92, 569–74.CrossRefGoogle ScholarPubMed
Tiezzi, A. (1991). The pollen tube cytoskeleton. Electron Microsc. Rev. 4, 205–19.CrossRefGoogle ScholarPubMed
Tiezzi, A., Moscatelli, A., Cai, G., Bartalesi, A. & Cresti, M. (1992). An immunoreactive homolog of mammalian kinesin in Nicotiana tabacum pollen tubes. Cell Motil. Cytoskel. 21, 132–7.CrossRefGoogle ScholarPubMed
Tirlapur, U.K. (1987). The role of calmodulin in reproductive physiology of higher plants. In XIV Int. Bot. Congress,24 July-1 August 1987,Berlin, Germany, abstract 1–110, p. 63.Google Scholar
Tirlapur, U.K. & Cresti, M. (1992). Computer-assisted video image analysis of spatial variations in membrane-associated Ca2+ and calmodulin during pollen hydration, germination and tip growth in Nicotiana tabacum L. Ann. Bot. 69, 503–8.CrossRefGoogle Scholar
Tirlapur, U.K. & Willemse, M.T.M. (1992). Changes in calcium and calmodulin levels during microsporogenesis, pollen development and germination in Gasteria verrucosa (Mill.) H. Duval. Sex. Plant Reprod. 5, 214–23.CrossRefGoogle Scholar
Tirlapur, U.K., Häder, D.P. & Scheuerlein, R. (1992). UV-B mediated damage in the photosynthetic flagellate, Euglena gracilis, studied by image analysis. Biol. Pflanz. 67, 305–17.Google Scholar
Wick, S.M., Muto, S. & Duniec, J. (1985). Double immunofluorescence labeling of calmodulin and tubulin in dividing plant cells. Protoplasma 126, 198206.CrossRefGoogle Scholar
Williamson, R.E. (1986). Organelle movements along actin filaments and microtubules. Plant Physiol. 82, 631–4.CrossRefGoogle ScholarPubMed
Williamson, R.E. (1993). Organelle movements. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 181202.CrossRefGoogle Scholar
Yen, L.F., Wang, X.Z., Teng, X.Y., Ma, Y.Z. & Liu, G.Q. (1986). Actin and myosin in pollens and their role in the growth of pollen tubes. Chin. Sci. Bull. 31, 267–78.Google Scholar