Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T12:04:54.217Z Has data issue: false hasContentIssue false

Conserved sequences of sperm-activating peptide and its receptor throughout evolution, despite speciation in the sea star Asterias amurensis and closely related species

Published online by Cambridge University Press:  01 August 2008

Mia Nakachi
Affiliation:
Department of Biosciences and Informatics, Keio University, Hiyoshi, Kouhoku-ku, Yokohama 223–8522, Japan. Department of Chemistry, Environmental Toxicology and Biotechnology, University of Nebraska – Lincoln, 28 Hamilton Hall, Lincoln, Nebraska 68588–0304, USA.
Motonori Hoshi
Affiliation:
Department of Biosciences and Informatics, Keio University, Hiyoshi, Kouhoku-ku, Yokohama 223–8522, Japan.
Midori Matsumoto
Affiliation:
Department of Biosciences and Informatics, Keio University, Hiyoshi, Kouhoku-ku, Yokohama 223–8522, Japan.
Hideaki Moriyama*
Affiliation:
Department of Chemistry, University of Nebraska – Lincoln, 28 Hamilton Hall, Lincoln, Nebraska 68588–0304, USA. Department of Chemistry, Environmental Toxicology and Biotechnology, University of Nebraska – Lincoln, 28 Hamilton Hall, Lincoln, Nebraska 68588–0304, USA.
*
All correspondence to: Hideaki Moriyama. Department of Chemistry, University of Nebraska – Lincoln, 28 Hamilton Hall, Lincoln, Nebraska 68588–0304, USA. Tel: +1 402 472 5367. Fax: +1 402 472 9402. e-mail: hmoriyama2@unl.edu

Summary

The asteroidal sperm-activating peptides (asterosaps) from the egg jelly bind to their sperm receptor, a membrane-bound guanylate cyclase, on the tail to activate sperm in sea stars. Asterosaps are produced as single peptides and then cleaved into shorter peptides. Sperm activation is followed by the acrosome reaction, which is subfamily specific. In order to investigate the molecular details of the asterosap–receptor interaction, corresponding cDNAs have been cloned, sequenced and analysed from the Asteriinae subfamily including Asterias amurensis, A. rubens, A. forbesi and Aphelasterias japonica, as well as Distolasterias nipon from the Coscinasteriinae subfamily. Averages of 29% and 86% identity were found from the deduced amino acid sequences in asterosap and its receptor extracellular domains, respectively, across all species examined. The phylogenic tree topology for asterosap and its receptor was similar to that of the mitochondrial cytochrome c oxidase subunit I. In spite of a certain homology, the amino acid sequences exhibited speciation. Conservation was found in the asterosap residues involved in disulphide bonding and proteinase-cleaving sites. Conversely, similarities were detected between potential asterosap-binding sites and the structure of the atrial natriuretic peptide receptor. Although the sperm-activating peptide and its receptor share certain common sequences, they may serve as barriers that ensure speciation in the sea star A. amurensis and closely related species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bohmer, M., Van, Q., Weyand, I., Hagen, V., Beyermann, M., Matsumoto, M., Hoshi, M., Hildebrand, E. & Kaupp, U.B. (2005). Ca2+ spikes in the flagellum control chemotactic behavior of sperm. EMBO J. 24, 2741–52.CrossRefGoogle ScholarPubMed
Felsenstein, J. (2005). PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle.Google Scholar
Fricker, L. D. (1988). Activation and membrane binding of carboxypeptidase E. J. Cell Biochem. 38, 279–89.CrossRefGoogle ScholarPubMed
Gilbert, W. (2006). Sequence Analysis 1.6.0. Informagen.Google Scholar
Hook, V., Yasothornsrikul, S., Greenbaum, D., Medzihradszky, K.F., Troutner, K., Toneff, T., Bundey, R., Logrinova, A., Reinheckel, T., Peters, C. & Bogyo, M. (2004). Cathepsin L and Arg/Lys aminopeptidase: a distinct prohormone processing pathway for the biosynthesis of peptide neurotransmitters and hormones. Biol. Chem. 385, 473–80.CrossRefGoogle ScholarPubMed
Hoshi, M., Nishigaki, T., Ushiyama, A., Okinaga, T., Chiba, K. & Matsumoto, M. (1994). Egg-jelly signal molecules for triggering the acrosome reaction in starfish spermatozoa. Int. J. Dev. Biol. 38, 167–74.Google ScholarPubMed
Kaupp, U.B., Solzin, J., Hildebrand, E., Brown, J.E., Helbig, A., Hagen, V., Beyermann, M., Pampaloni, F. & Weyand, I. (2003). The signal flow and motor response controling chemotaxis of sea urchin sperm. Nat. Cell Biol. 5, 109–17.CrossRefGoogle ScholarPubMed
Kaur, H. & Raghava, G.P. (2003). Prediction of beta-turns in proteins from multiple alignment using neural network. Protein Sci. 12, 627–34.CrossRefGoogle ScholarPubMed
Kawase, O., Minakata, H., Hoshi, M. & Matsumoto, M. (2005). Asterosap-induced elevation in intracellular pH is indispensable for ARIS-induced sustained increase in intracellular Ca2+ and following acrosome reaction in starfish spermatozoa. Zygote 13, 6371.CrossRefGoogle ScholarPubMed
Kelley, L. A., MacCallum, R.M. & Sternberg, M.J. (2000). Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299, 499520.CrossRefGoogle ScholarPubMed
Kyte, J. & Doolittle, R.F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–32.CrossRefGoogle ScholarPubMed
Liu, H., Force, T. & Bloch, K.D. (1997). Nerve growth factor decreases soluble guanylate cyclase in rat pheochromocytoma PC12 cells. J. Biol. Chem. 272, 6038–43.CrossRefGoogle ScholarPubMed
Lupas, A., Van Dyke, M. & Stock, J. (1991). Predicting coiled coils from protein sequences. Science 252, 1162–4.CrossRefGoogle ScholarPubMed
Matsumoto, M., Briones, A.V., Nishigaki, T. & Hoshi, M. (1999). Sequence analysis of cDNAs encoding precursors of starfish asterosaps. Dev. Genet. 25, 130–6.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Matsumoto, M., Solzin, J., Helbig, A., Hagen, V., Ueno, S., Kawase, O., Maruyama, Y., Ogiso, M., Godde, M., Minakata, H., Kaupp, U.B., Hoshi, M. & Weyand, I. (2003). A sperm-activating peptide controls a cGMP-signaling pathway in starfish sperm. Dev. Biol. 260, 314–24.CrossRefGoogle ScholarPubMed
Nakachi, M., Moriyama, H., Hoshi, M. & Matsumoto, M. (2006). Acrosome reaction is subfamily specific in sea star fertilization. Dev. Biol. 298, 597604.CrossRefGoogle ScholarPubMed
Nishigaki, T., Chiba, K. & Hoshi, M. (2000). A 130-kDa membrane protein of sperm flagella is the receptor for asterosaps, sperm-activating peptides of starfish Asterias amurensis. Dev. Biol. 219, 154–62.CrossRefGoogle ScholarPubMed
Nishigaki, T., Chiba, K., Miki, W. & Hoshi, M. (1996). Structure and function of asterosaps, sperm-activating peptides from the jelly coat of starfish eggs. Zygote 4, 237–45.CrossRefGoogle ScholarPubMed
Ogawa, H., Qiu, Y., Ogata, C.M. & Misono, K.S. (2004). Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction. J. Biol. Chem. 279, 28625–31.CrossRefGoogle ScholarPubMed
Perriere, G. & Gouy, M. (1996). WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78, 364–9.CrossRefGoogle ScholarPubMed
Pollastri, G. & McLysaght, A. (2005). Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21, 1719–20.CrossRefGoogle Scholar
Qiu, Y., Ogawa, H., Miyagi, M. & Misono, K.S. (2004). Constitutive activation and uncoupling of the atrial natriuretic peptide receptor by mutations at the dimer interface. Role of the dimer structure in signalling. J. Biol. Chem. 279, 6115–23.CrossRefGoogle ScholarPubMed
Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Plainview, NewYork: Cold Spring Harbor Laboratory Press.Google Scholar
Schwede, T., Kopp, J., Guex, N. & Peitsch, M.C. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–5.CrossRefGoogle ScholarPubMed
Shiba, K., Tagata, T., Ohmuro, J., Mogami, Y., Matsumoto, M., Hoshi, M. & Baba, S.A. (2006). Peptide-induced hyperactivation-like vigorous flagellar movement in starfish sperm. Zygote 14, 2332.CrossRefGoogle ScholarPubMed
Singh, S., Lowe, D.G., Thorpe, D.S., Rodriguez, H., Kuang, W.J., Dangott, L.J., Chinkers, M., Goeddel, D.V. & Garbers, D.L. (1988). Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature 334, 708–12.CrossRefGoogle ScholarPubMed
Steiner, D.F. (1998). The proprotein convertases. Curr. Opin. Chem. Biol. 2, 3139.CrossRefGoogle ScholarPubMed
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–82.CrossRefGoogle ScholarPubMed
Vacquier, V.D. (1998). Evolution of gamete recognition proteins. Science 281, 1995–8.CrossRefGoogle ScholarPubMed
Ward, G.E., Brokaw, C.J., Garbers, D.L. & Vacquier, V.D. (1985). Chemotaxis of Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer. J. Cell Biol. 101, 2324–9.CrossRefGoogle ScholarPubMed
Wilson, E.M. & Chinkers, M. (1995). Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 34, 4696–701.CrossRefGoogle ScholarPubMed