Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T01:19:14.712Z Has data issue: false hasContentIssue false

Early development and allometric growth patterns of the grumatã (Prochilodus vimboides Kner, 1859)

Published online by Cambridge University Press:  22 July 2015

Guilherme Souza*
Affiliation:
Laboratório de Ciências Ambientais, CBB, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes, RJ cep 28013–602, Brazil.
Edésio J. T. Melo
Affiliation:
Laboratório Biologia Celular e Tecidual, CBB, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil.
Erica P. Caramaschi
Affiliation:
Laboratório de Ecologia de Peixes, IB-CCS, Universidade Federal do Rio de Janeiro, Brazil.
Dalcio R. Andrade
Affiliation:
Laboratório de Zootecnia e Produção Animal, CCTA, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil.
Leandro R. Monteiro
Affiliation:
Laboratório de Ciências Ambientais, CBB, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil.
*
All correspondence to: G. Souza. Laboratório de Ciências Ambientais, CBB, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes, RJ cep 28013–602, Brazil. E-mail: guilhermesouza.bio@gmail.com.

Summary

The objective of this study was to characterize the early development and allometric growth of the grumatã (Prochilodus vimboides). We describe a sample of 266 eggs and larvae obtained through induced spawning. The eggs were spherical (mean 3.7 mm diameter), exhibited a yellow yolk and were non-adhesive and pelagic after fertilization and hydration. The time elapsed between the early cleavage and post-flexion stages was considered short (328 hours, 8054 hour-degrees) in regard to the development times of other Neotropical rheophilic species, but time to hatching was considerably longer than in other Prochilodus species. The most notable anatomical changes were observed between the end of the yolk larval stage and the beginning of the pre-flexion stage, when the larvae displayed directed swimming and the digestive system became functional, enabling the transition from endogenous to exogenous feeding. After hatching, the larvae grew from 6.04 to 15.15 mm in total length average. Two growth phases were observed at this stage: a non-linear asymptotic curve in yolk-sac larvae, and a linear constant-rate growth phase after exogenous feeding started. Allometric growth related to standard length was positive for head length, negative for eye diameter, and switched between phases from negative to positive in body depth and head height. Morphological development and allometric growth in different larval phases impose drastic anatomical and physiological changes that are synchronic with habitat changes and the flood cycles during the reproductive period.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlstrom, E.H. & Ball, O.P. (1954). Description of eggs and larvae of jack mackerel (Trachurus symmetricus) and distribution and abundance of larvae in 1950 and 1951. Fish. Bull. 56, 209–45.Google Scholar
Ahlstrom, E.H. & Moser, H.G. (1976). Eggs and larvae of fishes and their role in systematic investigations and in fisheries. Rev. Trav. Inst. Peches Marit. 40, 379–98.Google Scholar
Alexandre, C.M., Quintella, B.R., Ferreira, A.F., Romão, F.A. & Almeida, P.R. (2014). Swimming performance and ecomorphology of the Iberian barbel Luciobarbus bocagei (Steindachner, 1864) on permanent and temporary rivers. Ecol. Freshw. Fish 23, 244–58.Google Scholar
Arias-Gallo, M., Jiménez-Segura, L.F. & Dorado, M.P. (2010). Desarrollo larval de Prochilodus magdalenae (Steindachner, 1879) (Pisces: Prochilodontidae), río Magdalena, Colombia. Rev. Actual. Biol. 32, 199208.Google Scholar
Bailey, K. & Houde, E.D. (1989). Predation on eggs and larvae of marine fish and the recruitment problem. Adv. Mar. Biol. 25, 183.CrossRefGoogle Scholar
Balon, E.K. (1981). Saltatory processes and altricial to precocial forms in the ontogeny of fishes. Am. Zool. 21, 573–96.Google Scholar
Beerli, E.L., Logato, P.V.R. & Freitas, R.T.F. (2004). Alimentação e comportamento de larvas de pacu [Food and behaviour of pacu larvae], Piaractus mesopotamicus (Holmberg, 1887). Ciênc. Agrotec. 28, 149–55.Google Scholar
Bialetzki, A., Sanches, P.V., Baumgartner, G. & Nakatani, K. (1998). Caracterização morfológica e distribuição temporal de larvas e juvenis de Apareiodon affinis (Steindachner) (Osteichthyes, Parodontidae) no alto rio Paraná, Paraná [Morphological characterisation and temporal distribution of the larvae and juveniles of Apareiodon affinis (Steindachner) (Osteichthyes, Parodontidae) in the high Paraná River, Paraná] Rev. Bras. Zool. 15, 1037–47.Google Scholar
Blaxter, J.H.S. (1988). Pattern and variety in development. In Fish Physiology (eds. Hoar, W.S. & Randall, D.J.), pp. 148. New York: Academic Press.Google Scholar
Borçato, F.L., Bazzoli, N. & Sato, Y. (2004). Embryogenesis and larval ontogeny of the “piau-gordura”, Leporinus piau (Fowler) (Pisces, Anostomidae) after induced spawning. Rev. Bras. Zool. 21, 117–22.CrossRefGoogle Scholar
Botta, P., Sciaraa, A., Arranja, S., Musgas, L.D.S., Pereira, G.J.M. & Oberlender, G. (2010). Study of the embrionary development in sábalo (Prochilodus lineatus). Arch. Med. Vet. 42, 109–14.Google Scholar
Castro, R.M.C. & Vari, R.P. (2004). Detritivores of the South American fish family Prochilodontidae (Teleostei: Ostariophysi: Characiformes): a phylogenetic and revisionary study. Smithsonian Contrib. Zool. 622, 189.Google Scholar
Chambers, R.C. & Leggett, W.C. (1987). Size and age at metamorphosis in marine fishes: an analysis of lab-reared winter flounder Pseudopleuronectes americanus with a review of variation in other species. Can. J. Fish. Aquat. Sci. 44, 1936–47.CrossRefGoogle Scholar
Cunico, M.A., Graça, W.J., Veríssimo, S. & Bini, L.M. (2002). Influência do nível hidrológico sobre a assembléia de peixes em sazonalmente isolada da planície de inundação do alto rio Paraná. [Influence of water levels on fish assemblages seasonally isolated from the upper Paraná River floodplain]. Acta Sci. 24, 383–9.Google Scholar
Fuiman, L.A. (2002). Special considerations of fish eggs and larvae. In Fishery Science. The Unique Contributions Of Early Life Stages (eds Fuiman, L.A. & Werner, R.G.), pp. 132. Oxford: Blackwell Publishing.Google Scholar
Gisbert, E. (1999). Early development and allometric growth patterns in Siberian sturgeon and their ecological significance. J. Fish Biol. 54, 852–62.Google Scholar
Gisbert, E., Merino, G., Muguet, J.B., Bush, D., Piedrahita, R.H. & Conklin, D.E. (2002). Morphological development and allometric growth patterns in hatchery-reared California halibut larvae J . Fish Biol. 61, 1217–29.Google Scholar
Heming, T.A. & Buddington, R.K. (1988). Yolk absorption in embryonic and larval fishes. In Fish Physiology (eds Hoar, W.S. & Randall, W.S.), pp. 408–38. New York: Academic Press.Google Scholar
Hernández Cuadrado, E.E. (2013). Indução da atividade espermática e desenvolvimento embrionário e larval de curimba (Prochilodus lineatus) [Induction of spermatozoa activity and embryonic and larval development in curimba (Prochilodus lineatus)]. Doctoral thesis, Universidade Federal de Lavras, Lavras.Google Scholar
Honji, R.M., Tolussi, C.E., Mello, P. H., Caneppele, D. & Moreira, R.G., (2012). Embryonic development and larval stages of Steindachneridion parahybae (Siluriformes: Pimelodidae) – implications for the conservation and rearing of this endangered Neotropical species. Neotrop. Ichthyol, 10, 313327.Google Scholar
Jardine, D. & Litvak, M.K. (2003). Direct yolk sac volume manipulation of zebrafish embryos and the relationship between offspring size and yolk sac volume. J. Fish Biol. 63, 388–97.CrossRefGoogle Scholar
Katsanevakis, S. (2006). Modelling fish growth: model selection, multi-model inference and model selection uncertainty. Fish. Res. 81, 229235.Google Scholar
Katsanevakis, S. & Maravelias, C.D. (2008). Modelling fish growth: multi-model inference as a better alternative to a priori using von Bertalanffy equation. Fish Fisheries 9, 178–87.CrossRefGoogle Scholar
Kendall, A.W., Ahlstrom, E.H. & Moser, H.G. (1984). Early life history stages of fishes and their characters. In Ontogeny and Systematics of Fishes (eds Moser, H.G., Richards, W.J., Cohen, D.M., Fahay, M.P., Kendall, A.W. & Richardson, S.L.), pp. 1122. Lawrence, KS: American Society of Ichthyologists and Herpetologists.Google Scholar
Kováč, V., Copp, G.H. & Francis, M. (1999). Morphometry of the stone loach, Barbatula barbatula: do mensural characters reflect the species life history thresholds? Environ. Biol. Fish. 56, 105–15.Google Scholar
Kupren, K., Prusinska, M., Zarski, D., Krejszeff, S. & Kucharczyk, D. (2014). Early development and allometric growth in Nannacara anomala Regan, 1905 (Perciformes: Cichlidae) under laboratory conditions. Neotrop. Ichthyol. 12, 659–65.Google Scholar
Lasker, R., Feder, H.M., Theilack, G.H. & May, R.C. (1970). Feeding, growth and survival of Engraulis mordax larvae reared in the laboratory. Mar. Biol. 5, 345–53.Google Scholar
Lowe-McConnell, R.H. (1999). Estudos Ecológicos de Comunidades de Peixes Tropicais [Ecological Studies on Tropical Fish Communities]. São Paulo: EDUSP.Google Scholar
Mukai, Y., Tuzan, A.D., Lim, L.S. & Yahaya, S. (2010). Feeding behaviour under dark conditions in larvae of sutchi catfish Pangasianodon hypophthalmus . Fish Sci. 76, 921–30.Google Scholar
Nakatani, K., Agostinho, A.A., Baumgartner, G., Bialetzki, A., Sanches, P.V., Makrakis, M.C. & Pavanelli, C.S. (2001). Ovos e Larvas De Água Doce: Desenvolvimento e Manual de Identificação. [Freshwater Eggs and Larvae: Development and Identification Manual]. Maringá: EDUEM.Google Scholar
Ninhaus-Silveira, A., Foresti, F. & Azevedo, A. (2006). Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiformes; Prochilodontidae). Zygote 14, 217–29.Google Scholar
Oliveira, F.G., Bialetzki, A., Gomes, L.C., Santim, M. & Taguti, T.L. (2012). Desenvolvimento larval de Brycon hilarii (Characiformes, Characidae). Iheringia [Larval development of Brycon hilarii (Characiformes, Characidae).] Sér. Zool. 102, 6270.CrossRefGoogle Scholar
Peña, R. & Dumas, S. (2009). Development and allometric growth patterns during early larval stages of the spotted sand bass Paralabrax maculatofasciatus (Percoidei: Serranidae). Sci. Mar. 73S1, 183–9.Google Scholar
Pinder, A.C. & Gozlan, R.E. (2004). Early ontogeny of sunbleak. J. Fish Biol. 64, 762–75.CrossRefGoogle Scholar
Reis, R.E., Kullander, S.O. & Ferraris, C.J. Jr., (2003). Check List of the Freshwater Fishes of South and Central America. Porto Alegre: Edipucrs.Google Scholar
Romagosa, E., Narahara, M.Y. & Fenerich-Verani, N. (2001). Stages of embryonic development of the “matrinxã”, Brycon cephalus (Pisces, Characidae). Bol. Inst. Pesca 27, 2732.Google Scholar
Sanches, P.V., Baumgartner, G., Bialetzki, A., Suiberto, M.R., Gomes, F.D.C., Nakatani, K. & de Campos Barbosa, N.D. (2001). Caracterização do desenvolvimento inicial de Leporinus friderici (Osteichthyes, Anostomidae) da bacia do rio Paraná, Brasil [Characterization of the early development of L. friderici (Osteichthyes, Anostomidae) from the Paraná river basin, Brazil]. Acta Sci. 23, 383–9.Google Scholar
Santos, J.E. (1992). Ontogênese e comportamento larvais de seis espécies de peixes de água doce sob condições experimentais. [Ontogeny and larval behaviour of six species of freshwater fish under experimental conditions] Master's dissertation, Universidade Federal de Minas Gerais, Brasil.Google Scholar
Santos, J.E. & Godinho, H.P. (2002). Ontogenic events and swimming behaviour of larvae of the characid fish Salminus brasiliensis (Cuvier) (Characiformes, Characidae) under laboratory conditions. Rev. Bras. Zool. 19, 163–71.Google Scholar
Snyder, D.E. (1981). Contributions to a Guide to the Cypriniform Fish Larvae of the Upper Colorado River System in Colorado. Denver: United States Bureau of Land Management, Colorado Office.Google Scholar
Souza, G. (2004). Reprodução induzida, ontogenia inicial, etologia larval e alevinagem da piabanha (Brycon insignis, steindachner, 1877) [Induced reproduction, early ontogeny, larval ethology and nursery area of the piabanha]. Master's dissertation, Universidade Estadual do Norte Fluminense, Campos dos Goitacazes.Google Scholar
van Snik, G.M.J., van den Boogaart, J.G.M. & Osse, J.W.M. (1997). Larval growth patterns in Cyprinus carpio and Clarias gariepinus with attention to finfold. J. Fish Biol. 50, 1339–52.Google Scholar
Woynarovich, E. & Horváth, L.A. (1983). Propagação Artificial de Peixes de Águas Tropicais –Manual de Extensão [Artificial propagation of tropical water fish – Extension manual]. Brasilia: FAO/CODEVASF/CNPq.Google Scholar
Yúfera, M. & Darias, M.J. (2007). The onset of exogenous feeding in marine fish larvae. Aquaculture 268, 5363.CrossRefGoogle Scholar