Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T15:39:15.320Z Has data issue: false hasContentIssue false

Estimation by radiation inactivation of the minimum functional size of acrosome-reaction-including substance (ARIS) in the starfish, Asterias amurensis

Published online by Cambridge University Press:  26 September 2008

Akira Ushiyama
Affiliation:
Tokyo Insitute of Technology, and University of Tokyo, Tokyo, Japan.
Kazuyoshi Chiba
Affiliation:
Tokyo Insitute of Technology, and University of Tokyo, Tokyo, Japan.
Akihiro Shima
Affiliation:
Tokyo Insitute of Technology, and University of Tokyo, Tokyo, Japan.
Motonori Hoshi*
Affiliation:
Tokyo Insitute of Technology, and University of Tokyo, Tokyo, Japan.
*
Motonori Hoshi, Department of Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama 226, Japan. Telephone: 81-45-924-5720. Fax: 81-45-924-5777. e-mail: mhoshi@bio.titech.ac.jp.

Summary

In the starfish Asterias amurensis, the jelly coat of the eggs contains a glycoprotein essential for the induction of the acrosome reaction in homologous spermatozoa that is termed the acrosome-reaction-inducing substance (ARIS).ARIS is a highly sulphated and fucose-rich glycoprotein of extremely high molecular mass(>104 kDa). ARIS was irradiated with high-energy eletrons in order to estimate the minimum size required for its biological activity. The minimum functional unit or target size of ARIS was estimated to be c. 14 kDa by target size analysis. ARIS was significantly disintegrated by the irradiation, yet the total sugar content was not apparently reduced. The binding of 125I-labelled ARIS to spermatozoa competed with that of irradiated ARIS, although the affinity of ARIS was much reduced after irradiation.

Type
Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelides, K.J., Nutter, T.J., Elmer, L.W. & kempner, E.S. (1985). Functional unit size of the neurotoxin receptors on the voltage-dependent sodium channel. J. Biol. Chem. 260,3431–9.CrossRefGoogle ScholarPubMed
Bonnell, B.S., Keller, S.H., Vacquier, V.D. & Chandler, D.E. (1994). The sea urchin egg jelly coat consists of globular glycoproteins bound to a fibrous fucan superstructure. Dev. Biol. 162,313–24.CrossRefGoogle ScholarPubMed
Dale, B., Dan-Sohkawa, M., De Santis, A. & Hoshi, M. (1981). Fertilization of the starfish Asteropecten aurantiacus. Exp. Cell Res.. 132, 505–10.CrossRefGoogle ScholarPubMed
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–6.CrossRefGoogle Scholar
Garbers, D.L. (1989). Molecular basis of fertilization. Annu. Rev. Biochem. 58, 719–42.CrossRefGoogle ScholarPubMed
Hoshi, M., Nishigaki, T., Ushiyama, A., Okinaga, T., Chiba, K. & Matsumoto, M. (1994).Egg-jelly signal molecules for triggering the acrosome reaction in starfish spermatozoa. Int. J. Dev. Biol. 38, 167–74.Google ScholarPubMed
Ikadi, H. & Hoshi, M. (1981). Biochemical studies on the acrosome reaction of the starfish, Asterias amurensis: factors participating in the acrosome reaction. Dev. Growth Differ. 23, 7380.CrossRefGoogle Scholar
Innerarity, T.L., Kempner, E.S., Hui, D.Y. & Mahley, R.W. (1981). Functional unit of the low density lipoprotein receptor of fibroblasts: a 100 000-dalton structure with multiple binding sites. Proc. Natl. Acad. Sci. USA 78, 4378–82.CrossRefGoogle ScholarPubMed
Keller, S.H.& Vacquier, V.D. (1994). The isolation of acrosome-reaction-inducing glycoproteins from sea urchin egg jelly. Dev.Biol. 162, 304–12.CrossRefGoogle ScholarPubMed
Kempner, E.S. (1993). Novel predictions from radiation target analysis. Trends in Biochem.Sci. 18, 236–9.CrossRefGoogle ScholarPubMed
Kempner, E.S. & Schlegel, W. (1979).Size determination of enzymes by radiation inactivation. Anal. Biochem. 92, 210.CrossRefGoogle ScholarPubMed
Longo, F.J., Ushiyama, A., Chiba, K. & Hoshi, M. (1995). Ultrastructural localization of acrosome reaction-inducing substance (ARIS) on sperm of the starfish Asterias amurensis. Mol. Reprod. Dev. 41, 91–9.CrossRefGoogle ScholarPubMed
Matsui, T., Nishiyama, I., Hino, A. & Hoshi, M. (1986). Induction of the acrosome reaction in starfish. Dev. Growth Differ. 28, 339–48.CrossRefGoogle ScholarPubMed
Miller, D.J.& Ax, R.L. (1990). Carbohydrates and fertilization in animal. Mol. Reprod. Dev. 26, 184–98.CrossRefGoogle Scholar
Okinaga, T., Ohashi, Y. & Hoshi, M. (1992). A novel saccharide struture, , is present in acrosome reaction-inducing substance of the starfish, Asterias amurensis. Biochem. Biophys. Res. Commun. 186, 405–10.CrossRefGoogle Scholar
Park, J.T. & Johnson, M.G. (1949). A submicrodetermination of glucose. J. Biol. Chem. 181, 149–51.CrossRefGoogle ScholarPubMed
SeGall, G.K. & Lennarz, W.J. (1979). Chemical characterization of the component of the jelly coat from sea urchin eggs responsible for induction of the acrosome reaction. Dev. Biol. 71, 3348.CrossRefGoogle ScholarPubMed
Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H. & Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J. & Klenk, D.C. (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 7685.CrossRefGoogle ScholarPubMed
Ushiyama, A., Araki, T., Chiba, K. & Hoshi, M. (1993). Specific binding of acrosome-reaction-inducing substance to the head of starfish spermatozoa. Zygote 1, 121–7.CrossRefGoogle Scholar
Ward, C.R. & Kopf, G.S. (1993). Molecular events mediationg sperm activation.Dev. Biol. 158, 934.CrossRefGoogle Scholar
Wassarman, P.M. (1990). Profile of a mammalian sperm receptor. Development. 108; 117.CrossRefGoogle ScholarPubMed