Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T16:58:56.125Z Has data issue: false hasContentIssue false

Importance of vascular endothelial growth factor (VEGF) in ovarian physiology of mammals

Published online by Cambridge University Press:  13 October 2011

Valdevane Rocha Araújo*
Affiliation:
Universidade Estadual do Ceará (UECE), Faculdade de Veterinária (FAVET), Programa de Pós-Graduação em Ciências Veterinárias (PPGCV), Laboratório de Manipulação de Oócitos e Folículos Pré-Antrais (LAMOFOPA), Av. Paranjana, 1700, Campus do Itaperi, Fortaleza–CE–Brasil, CEP: 60740–930Brasil.
Ana Beatriz Graça Duarte
Affiliation:
Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, 60740–930, Fortaleza, Ceará, Brazil.
Jamily Bezerra Bruno
Affiliation:
Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, 60740–930, Fortaleza, Ceará, Brazil.
Cláudio Afonso Pinho Lopes
Affiliation:
Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, 60740–930, Fortaleza, Ceará, Brazil.
José Ricardo de Figueiredo
Affiliation:
Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, 60740–930, Fortaleza, Ceará, Brazil.
*
All correspondence to: Universidade Estadual do Ceará (UECE), Faculdade de Veterinária (FAVET), Programa de Pós-Graduação em Ciências Veterinárias (PPGCV), Laboratório de Manipulação de Oócitos e Folículos Pré-Antrais (LAMOFOPA), Av. Paranjana, 1700, Campus do Itaperi, Fortaleza–CE–Brasil, CEP: 60740–930Brasil. Tel: +55 85 3101 9852. Fax: +55 85 3101 9840. e-mail: val_exclusiva@yahoo.com.br

Summary

Ovarian folliculogenesis in mammals is a complex process. Several compounds have been tested during in vitro culture of follicular cells for a better understanding of the mechanisms and factors related to ovarian folliculogenesis in mammals. From these compounds, vascular endothelial growth factor (VEGF) can be highlighted, as it is strongly associated with angiogenesis and, in recent years, its presence in ovarian cells has been investigated extensively. Previous studies have shown that the presence of VEGF protein, as well as mRNA expression of its receptor 2 (VEGFR-2) increases during follicular development. Therefore, it is likely that the interaction between VEGF and VEGFR-2 is crucial to promote follicular development. However, few studies on the influence of this factor on follicular development have been reported. This review addresses aspects related to the structural characterization and mechanism of action of VEGF and its receptors, and their biological importance in the ovary of mammals.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abir, R., Ao, A., Zhang, X.Y., Garor, R., Nitke, S. & Fisch, B. (2010). Vascular endothelial growth factor A and its two receptors in human preantral follicles from fetuses, girls, and women. Fertil. Steril. 93, 2337–47.CrossRefGoogle ScholarPubMed
Alon, T., Hemo, I., Itin, A., Pe'er, J., Stone, J. & Keshet, E. (1995). Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1, 1024–8.CrossRefGoogle ScholarPubMed
Al-zi'abi, M.O., Watson, E.D. & Fraser, H.M. (2003). Angiogenesis and vascular endothelial growth factor expressions in the equine corpus luteum. Reproduction 125, 259–70.CrossRefGoogle ScholarPubMed
Barboni, B., Turriani, M., Galeati, G., Spinaci, M., Bacci, M.L., Forni, M. & Mattioli, M. (2000). Vascular endothelial growth factor production in growing pig antral follicles. Biol. Reprod. 63, 858–64.CrossRefGoogle ScholarPubMed
Bates, D.O & Curry, F.E. (1997). Vascular endothelial growth factor increases microvascular permeability via a Ca2+-dependent pathway. Am. J. Physiol. 273, H68794.Google Scholar
Bates, D.O., Cui, T.G., Doughty, J.M., Winkler, M., Sugiono, M., Shields, J.D., Peat, D., Gillatt, D. & Harper, S.J. (2002). VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 62, 4123–31.Google ScholarPubMed
Berisha, B., Schams, D., Kosmann, M., Amselgruber, W. & Einspanier, R. (2000). Expression and tissue concentration of vascular endothelial growth factor, its receptors, and localization in the bovine corpus luteum during estrous cycle and pregnancy. Biol. Reprod. 63, 1106–14.CrossRefGoogle ScholarPubMed
Bruno, J.B., Celestino, J.J.H., Lima-Verde, I.B., Lima, L.F., Matos, M.H.T., Araújo, V.R., Saraiva, M.V.A., Martins, F.S., Name, K.P.O., Campello, C.C., Báo, S.N., Silva, J.R.V. & Figueiredo, J.R. (2009). Expression of vascular endothelial growth factor (VEGF) receptor in goat ovaries and improvement of in vitro caprine preantral follicle survival and growth with VEGF. Reprod. Fertil. Dev. 21, 679–87.CrossRefGoogle ScholarPubMed
Byrne, A.M., Bouchier-Hayes, D.J. & Harmey, J.H. (2005). Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J. Cell. Mol. Med. 9, 777–94.CrossRefGoogle ScholarPubMed
Cantley, L.C. (2002). The phosphoinositide 3-kinase pathway. Science 296, 1655–7.CrossRefGoogle ScholarPubMed
Celik-Ozenci, C., Akkoyunhlu, G., Kayisli, U.A., Arici, A. & Demir, R. (2003). Localization of vascular endothelial growth factor in the zona pellucida of developing ovarian follicles in the rat: a possible role in destiny of follicles. Histochem. Cell. Biol. 120, 383–90.CrossRefGoogle Scholar
Danforth, D.R., Arbogast, L.K., Ghosh, S., Dickerman, A., Rofagha, R. & Friedman, C.I. (2003). Vascular endothelial growth factor stimulates preantral follicle growth in the rat ovary. Biol. Reprod. 68, 1736–41.CrossRefGoogle ScholarPubMed
De Vries, C., Escobedo, J.A., Ueno, H., Houck, K., Ferrara, N. & Williams, L.T. (1992). The fms-like tyrosine, kinase, a receptor for vascular endothelial growth factor. Science 255, 989–91.CrossRefGoogle ScholarPubMed
Dvorak, H.F. (2000). VPF/VEGF and the angiogenic response. Semin. Perinatol. 24, 7578.CrossRefGoogle ScholarPubMed
Dvorak, H.F., Brown, L.F., Detmar, M. & Dvorak, A.M. (1995). Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146, 1029–39.Google ScholarPubMed
Einspanier, R., Schönfelder, M., Müller, K., Stojkovic, M., Kosmann, M., Wolf, E. & Schams, D. (2002). Expression of the vascular endothelial growth factor and its receptors and effects of VEGF during in vitro maturation of bovine cumulus–oocyte complexes (COC). Mol. Reprod. Dev. 62, 2936.CrossRefGoogle ScholarPubMed
Ferrara, N. & Alitalo, K. (1999). Clinical applications of angiogenic growth factors and their inhibitors. Nat. Med. 5, 1359–64.CrossRefGoogle ScholarPubMed
Ferrara, N. & Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. Endocr. Rev. 18, 425.CrossRefGoogle ScholarPubMed
Ferrara, N. & Henzel, W.J. (1989). Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161, 851–8.CrossRefGoogle ScholarPubMed
Ferrari, B., Pezzuto, A., Barusi, L. & Coppola, F. (2006). Follicular fluid vascular endothelial growth factor concentrations are increased during GnRH antagonist/FSH ovarian stimulation cycles. Eur. J. Obstet. Gyn. Reprod. Biol. 124, 70–6.CrossRefGoogle ScholarPubMed
First, N.L. & Barnes, F.L. (1989). Development of preimplantation mammalian embryos. Prog. Clin. Biol. Res. 294, 151–70.Google ScholarPubMed
Fisher, T.E., Zelinski, M.B., Molskness, T.A. & Stouffer, R.L. (2009). Primate preantral follicles produce vascular endothelial growth factor (VEGF) during three-dimensional (3D) culture as a function of growth rate. Fertil. Steril. 92, S64.CrossRefGoogle Scholar
Gaulden, M.E. (1992). Maternal age effect: the enigma of Down syndrome and other trisomic conditions. Mutat. Res. 296, 6988.CrossRefGoogle ScholarPubMed
Gerber, H.P., Dixit, V. & Ferrara, N. (1998a). Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem. 273, 13313–6.CrossRefGoogle ScholarPubMed
Gerber, H.P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B.A., Dixit, V. & Ferrara, N. (1998b). VEGF regulates endothelial cell survival by the PI3-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 273, 30336–43.CrossRefGoogle ScholarPubMed
Gitay-Goren, H., Sofer, S., Vlodavsky, I. & Neufeld, G. (1992). The binding of vascular endothelial growth factor to its receptor is dependent on cell-surface associated heparin-like molecules. J. Biol. Chem. 267, 6093–8.CrossRefGoogle ScholarPubMed
Gordon, J.D., Messiano, S., Zaloudek, C.J. & Jaffe, R.B. (1996). Vascular endothelial growth factor localization in human ovary and fallopian tubes: possible role in reproductive function and ovarian cyst formation. J. Clin. Endocrinol. Metabol. 81, 353–9.Google ScholarPubMed
Greenaway, J., Centry, P.A., Feige, J-J., Lamarre, J. & Petrik, J.J. (2005). Thrombospondin and vascular endothelial growth factor are cyclically expressed in an inverse pattern during bovine ovarian follicle development. Biol. Reprod. 72, 1071–8.CrossRefGoogle Scholar
Harata, T., Ando, H., Iwase, A., Nagasaka, T., Mizutani, S. & Kikkawa, F. (2006). Localization of angiotensin II, the AT1 receptor, angiotensin-converting enzyme, aminopeptidase A, adipocyte-derived leucine aminopeptidase, and vascular endothelial growth factor in the human ovary throughout the menstrual cycle. Fertil. Steril. 86, 433–9.CrossRefGoogle ScholarPubMed
Ho, Q.T. & Kuo, C.J. (2007). Vascular endothelial growth factor: Biology and therapeutic applications. Int. J. Biochem. Cell. Biol. 39, 1349–57.CrossRefGoogle ScholarPubMed
Holmes, D.I.R. & Zachary, I. (2005). The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Gen. Biol. 6, 209.CrossRefGoogle ScholarPubMed
Houck, K.A., Ferrara, N., Winer, J., Cachianes, G., Li, B. & Leung, D.W. (1991). The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol. 5, 1806–14.CrossRefGoogle ScholarPubMed
Iijima, K., Jiang, J-Y., Shimizu, T., Sasada, H. & Sato, E. (2005). Acceleration of follicular development by administration of vascular endothelial growth factor in cycling female rats. J. Reprod. Dev. 51, 161–8.CrossRefGoogle ScholarPubMed
Jakeman, L.B., Armanini, M., Phillips, H.S. & Ferrara, N. (1993). Developmental expression of binding sites and messenger ribonucleic acid for vascular endothelial growth factor suggests a role for this protein in vasculogenesis and angiogenesis. Endocrinology 133, 848–59.CrossRefGoogle ScholarPubMed
Jiang, J.Y., Macchiarelli, G., Tsang, B.K. & Sato, E. (2003). Capillary angiogenesis and degeneration in bovine ovarian antral follicles. Reproduction 125, 211–23.CrossRefGoogle ScholarPubMed
Kaczmarek, M.M., Schams, D. & Ziecik, A.J. (2005). Role of vascular endothelial growth factor in ovarian physiology – an overview. Reprod. Biol. 5, 111–36.Google ScholarPubMed
Kaczmarek, M.M., Kowalczyk, A.E., Waclawik, A., Schams, D. & Ziecik, A.J. (2007). expression of vascular endothelial growth factor and its receptors in the porcine corpus luteum during the estrous cycle and early pregnancy. Mol. Reprod. Dev. 74, 730–9.CrossRefGoogle ScholarPubMed
Kaipainen, A., Korhonen, J., Mustonen, T., Van Hinsbergh, V.W., Fang, G.H., Dumont, D., Breitman, M. & Alitalo, K. (1995). Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl. Acad. Sci. USA 92, 3566–70.CrossRefGoogle ScholarPubMed
Karkkainen, M.J., Makinen, T. & Alitalo, K. (2002). Lymphatic endothelium: a new frontier of metastasis research. Nat. Cell Biol. 4, E25.CrossRefGoogle ScholarPubMed
Kawano, Y., Hasan, K.Z., Fukuda, J., Mine, S. & Miyakawa, I. (2003). Production of vascular endothelial growth factor and angiogenic factor in human follicular fluid. Mol. Cell. Endocrinol. 202, 1923.CrossRefGoogle ScholarPubMed
Keyt, B.A., Berleau, L.T., Nguyen, H.V., Chen, H., Heinsohn, H., Vandlen, R. & Ferrara, N. (1996). The carboxyl-terminal domain of vascular endothelial growth factor is critical for its mitogenic potency. J. Biol. Chem. 271, 7788–95.CrossRefGoogle ScholarPubMed
Kezele, P.R., Ague, J.M., Nilsson, E. & Skinner, M.K. (2005). Alterations in the ovarian transcriptome during primordial follicle assembly and development. Biol. Reprod. 72, 241–55.CrossRefGoogle ScholarPubMed
Koos, R.D. (1995). Increased expression of vascular endothelial growth/permeability factor in the rat ovary following an ovulatory gonadotropin stimulus: potential roles in follicle rupture. Biol. Reprod. 52, 1426–35.CrossRefGoogle ScholarPubMed
Krussel, J.S., Berh, B., Milki, A.A., Hirchehain, J., Wen, Y., Bielfeld, P. & Polan, M.L. (2001). Vascular endothelial growth factor (VEGF) mRNA splice variants are differentially expressed in human blastocyst. Mol. Hum. Reprod. 7, 5763.CrossRefGoogle Scholar
Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V. & Ferrara, N. (1989). Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–9.CrossRefGoogle ScholarPubMed
Luo, H., Kimura, K., Aoki, M. & Hirako, M. (2002). Effect of vascular endothelial growth factor on maturation, fertilization and developmental competence of bovine oocytes. J. Vet. Med. Sci. 64, 803–6.CrossRefGoogle ScholarPubMed
Mattioli, M., Barboni, B., Turriani, M., Galeati, G., Zannoni, A., Castellani, G., Berardinelli, P. & Scapolo, P.A. (2001). Follicle activation involves vascular endothelial growth factor production and increased blood vessel extension. Biol. Reprod. 65, 1014–19.CrossRefGoogle ScholarPubMed
Mignatti, P., Tsuboi, R., Robbins, E. & Rifkin, D.B. (1989). In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor-induced proteinases. J. Cell Biol. 108, 671–82.CrossRefGoogle ScholarPubMed
Muller, Y.A., Li, B., Christinger, H.W., Wells, J.A., Cunningham, B.C. & de Vos, A.M. (1997). Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc. Natl. Acad. Sci. USA 94, 7192–7.CrossRefGoogle ScholarPubMed
Neufeld, G., Cohen, T., Gengrinovitch, S. & Poltorak, Z. (1999). Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 922.CrossRefGoogle ScholarPubMed
Otani, N., Minami, S., Yamoto, M., Shikone, T., Otani, H., Nishiyama, R., Otani, T. & Nakano, R. (1999). The vascular endothelial growth factor/fms-like tyrosine kinase system in human ovary during the menstrual cycle and early pregnancy. J. Clin. Endocrinol. Metab. 84, 3845–51.CrossRefGoogle ScholarPubMed
Papa, P.C., Moura, C.E., Artoni, L.P., Fátima, L.A., Campos, D.B., Marques, J.E. Jr, Baruselli, P.S., Binelli, M., Pfarrer, C. & Leiser, R. (2007). VEGF-system expression in different stages of estrous cycle in superovulated and non-treated water buffalo. Domest. Anim. Endocrinol. 33, 379–89.CrossRefGoogle ScholarPubMed
Park, J.E., Keller, G-A. & Ferrara, N. (1993). The vascular endothelial growth factor isoforms (VEGF): differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF Mol. Biol. Cell. 4, 1317–26.CrossRefGoogle ScholarPubMed
Pepper, M.S., Ferrara, N., Orci, L. & Montesano, R. (1992). Potent synergism between basic fibroblast growth factor and vascular endothelial growth factor in the induction of angiogenesis in vitro. Biochem. Biophys. Res. Commun. 189, 824–31.CrossRefGoogle ScholarPubMed
Pepper, M.S., Vassallim, J-D., Wilks, J.W., Schweigerer, L., Orci, L. & Montesano, R. (1994). Modulation of bovine microvascular endothelial cell proteolytic properties by inhibitors of angiogenesis. J. Cell. Biochem. 55, 419–34.CrossRefGoogle ScholarPubMed
Quintana, R., Kopcow, L., Sueldo, C., Marconi, G., Rueda, N.G. & Barañao, R.I. (2004). Direct injection of vascular endothelial growth factor into the ovary of mice promotes follicular development. Fertil. Steril. 82, 1101–4.CrossRefGoogle ScholarPubMed
Rathjen, P.D., Toth, S., Willis, A., Heath, J.K. & Smith, A.G. (1990). Differentiation inhibiting activity is produced in matrix-associated and diffusible forms that are generated by alternate promoter usage. Cell 62, 1105–14.CrossRefGoogle ScholarPubMed
Redmer, D.A. & Reynolds, L.P. (1996). Angiogenesis in the ovary. Rev. Reprod. 1, 182–92.CrossRefGoogle ScholarPubMed
Redmer, D.A., Dai, Y., Li, J., Charnock-Jones, D.S., Smith, S.K., Reynolds, L.P. & Moor, R.M. (1996). Characterization and expression of vascular endothelial growth factor (VEGF) in the ovine corpus luteum. J. Reprod. Fertil. 108, 157–65.CrossRefGoogle ScholarPubMed
Roberts, W.G. & Palade, G.E. (1995). Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 108, 2369–79.CrossRefGoogle ScholarPubMed
Roberts, A.E., Arbogast, L.K., Friedman, C.I., Cohn, D.E., Kaumaya, P.T. & Danforth, D.R. (2007). Neutralization of endogenous vascular endothelial growth factor depletes primordial follicles in the mouse ovary. Biol. Reprod. 76, 218–23.CrossRefGoogle ScholarPubMed
Sasisekharan, R., Moses, M.A., Nugent, M.A., Cooney, C.L. & Langer, R. (1994). Heparinase inhibits neovascularization. Proc. Natl. Acad. Sci. USA 91, 1524–8.CrossRefGoogle ScholarPubMed
Senger, D.R., Galli, S.J., Dvorak, A.M., Perruzzi, C.A., Harvey, V.S. & Dvorak, H.F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–5.CrossRefGoogle ScholarPubMed
Sharma, R.K. & Sudan, N. (2010). Immunohistochemical mapping of vascular endothelial growth factor during follicular growth in goat ovary. J. Cell Tis. Res. 10, 2101–4.Google Scholar
Shibuya, M., Yamaguchi, S., Yamane, A., Ikeda, T., Tojo, A., Matsushime, H. & Sato, M. (1990). Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (Flt) closely related to the fms family. Oncogene 5, 519–24.Google Scholar
Shifren, J.A., Tseng, J.F., Zaloudek, C.J., Ryan, Y.P., Meng, Y.G., Ferrara, N., Jaffe, R.B. & Taylor, R.N. (1996). Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J. Clin. Endocrinol. Metabol. 81, 3112–8.Google ScholarPubMed
Shimizu, T., Jiang, J.Y., Sasada, H. & Sato, E. (2002). Changes of mRNA expression of angiogenic factors and related receptors during follicular development in gilts. Biol. Reprod. 67, 1846–52.CrossRefGoogle ScholarPubMed
Shimizu, T., Kawahara, M., Abe, Y., Yokoo, M., Sasada, H. & Sato, E. (2003). Follicular microvasculature and angiogenic factors in the ovaries of domestic animals J. Reprod. Dev. 49, 181–92.CrossRefGoogle ScholarPubMed
Shin, S.Y., Lee, J.Y., Lee, E.Y., Choi, J.Y., Yoon, B.K., Bae, D. & Choi, D. (2006). Protective effect of vascular endothelial growth factor (VEGF) in frozen–thawed granulosa cells is mediated by inhibition of apoptosis. Eur. J. Obstet. Gyn. Reprod. Biol. 125, 233–38.CrossRefGoogle ScholarPubMed
Shweiki, D., Itin, A., Neufeld, G., Gitay-Goren, H. & Keshed, E. (1993). Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally regulated angiogenesis. J. Clin. Invest. 91, 2235–43.CrossRefGoogle ScholarPubMed
Stouffer, R.L., Martínez-Chequer, J.C., Molskness, T.A., Xu, F. & Hazzard, T.M. (2001). Regulation and action of angiogenic factors in the primate ovary. Arch. Med. Res. 32, 567–75.CrossRefGoogle ScholarPubMed
Suzuki, T., Sasano, H., Takaya, R., Fukaya, T., Yajima, A. & Nagura, H. (1998). Cyclic changes of vasculature and vascular phenotypes in normal human ovaries. Hum. Reprod. 13, 953–9.CrossRefGoogle ScholarPubMed
Tamanini, C. & De Ambrogi, M. (2004). Angiogenesis in developing follicle and corpus luteum. Reprod. Dom. Ani. 39, 206–16.CrossRefGoogle ScholarPubMed
Taylor, P.D., Hillier, S.G. & Fraser, H.M. (2004). Effects of GnRH antagonist treatment on follicular development and angiogenesis in the primate ovary. J. Endocrinol. 183, 117.CrossRefGoogle ScholarPubMed
Terman, B.I., Dougher-Vermazen, M., Carrion, M.E., Dimitrov, D., Armellino, D.C., Gospodarowicz, D. & Bohlen, P. (1992). Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 187, 1579–86.CrossRefGoogle ScholarPubMed
Tischer, E., Gospodarowicz, D., Mitchell, R., Silva, M., Schilling, J., Lau, K., Crisp, T., Fiddes, J.C. & Abraham, J.A. (1989). Vascular endothelial growth factor: a new member of the platelet-derived growth factor gene family. Biochem. Biophys. Res. Commun. 165, 1198–206.CrossRefGoogle ScholarPubMed
Tischer, E., Mitchell, R., Hartmann, T., Silva, M., Gospodarowicz, D., Fiddes, J. & Abraham, J. (1991). The human gene for vascular endothelial growth factor. J. Biol. Chem. 266, 11947–54.CrossRefGoogle ScholarPubMed
Trounson, A.O., Willadsen, S.M. & Rowson, L.E.A. (1977). Fertilization and development capability of bovine follicular oocytes matured in vitro and in vivo and transferred to the oviducts of rabbits and cows. J. Reprod. Fertil. 51, 321–7.CrossRefGoogle Scholar
Van Blerkom, J., Antczak, M. & Schrader, R. (1997). The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum. Reprod. 12, 1047–55.CrossRefGoogle Scholar
Van den Hurk, R. & Zhao, J. (2005). Formation of mammalian oocytes and their growth differentiation and maturation within ovarian follicles. Theriogenology 63, 1717–51.CrossRefGoogle ScholarPubMed
Wulff, C., Wiegand, S.J., Saunders, P.T.K., Scobie, G.A. & Fraser, H.M. (2001). Angiogenesis during follicular development in the primate and its inhibition by treatment with truncated Flt-1-Fc (vascular endothelial growth factor trapA40). Endocrinology 142, 3244–54.CrossRefGoogle ScholarPubMed
Yang, M.Y. & Fortune, J.E. (2007). Vascular endothelial growth factor stimulates the primary to secundary follicle transition in bovine follicles in vitro. Mol. Reprod. Dev. 74, 1095–104.CrossRefGoogle Scholar
Yang, H., Lee, H.H., Lee, H.C., Ko, D.S. & Kim, S.S. (2008). Assessment of vascular endothelial growth factor expression and apoptosis in the ovarian graft: can exogenous gonadotropin promote angiogenesis after ovarian transplantation? Fertil. Steril. 90, 1550–8.CrossRefGoogle ScholarPubMed
Yuan, F., Chen, Y., Dellian, M., Safabakhsh, N., Ferrara, N. & Jain, R.K. (1996). Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl. Acad. Sci. USA 93, 14765–70.CrossRefGoogle ScholarPubMed
Zimmermann, R.C., Xiao, E., Husami, N., Sauer, M.V., Lobo, R., Kitajewski, J. & Ferin, M. (2001). Short-term administration of antivascular endothelial growth factor antibody in the late follicular phase delays follicular development in the rhesus monkey. J. Clin. Endocrinol. Metab. 86, 768–72.Google ScholarPubMed
Zimmermann, R.C., Hartman, T., Kavic, S., Pauli, S.A., Bohlen, P., Sauer, M.V. & Kitajewski, J. (2003). Vascular endothelial growth factor receptor 2–mediated angiogenesis is essential for gonadotropin-dependent follicle development. J. Clin. Invest. 112, 659–69.CrossRefGoogle ScholarPubMed