Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T05:30:00.122Z Has data issue: false hasContentIssue false

In vivo and in vitro matured bovine oocytes present a distinct pattern of single-cell gene expression

Published online by Cambridge University Press:  20 October 2022

Lisandra C. Caetano
Affiliation:
Gynecology and Obstetrics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
Carolina G. Verruma
Affiliation:
Genetics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
Fabio L.V. Pinaffi
Affiliation:
Veterinary Medicine Department, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil Veterinary Clinical Sciences Department, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
Izabelle B. Jardim
Affiliation:
Veterinary Medicine Department, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
Gilvan P. Furtado
Affiliation:
Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Fortaleza, CE, Brazil
Luciano A. Silva
Affiliation:
Veterinary Medicine Department, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
Cristiana L.M. Furtado*
Affiliation:
Gynecology and Obstetrics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil Drug Research and Development Center, Postgraduate Program in Translational Medicine, Federal University of Ceará, Fortaleza, CE, Brazil Experimental Biology Center, University of Fortaleza (UNIFOR), Fortaleza, CE, Brazil
Ana Carolina J. de Sá Rosa-e-Silva*
Affiliation:
Gynecology and Obstetrics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
*
Authors for correspondence: Cristiana L. M. Furtado, Experimental Biology Center, Universisty of Fortaleza (UNIFOR), Fortaleza, CE, Brazil. E-mail: clibardim@gmail.com; Ana Carolina J. de Sá Rosa-e-Silva, Gynecology and Obstetrics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil. E-mail: anasars@fmrp.usp.br
Authors for correspondence: Cristiana L. M. Furtado, Experimental Biology Center, Universisty of Fortaleza (UNIFOR), Fortaleza, CE, Brazil. E-mail: clibardim@gmail.com; Ana Carolina J. de Sá Rosa-e-Silva, Gynecology and Obstetrics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil. E-mail: anasars@fmrp.usp.br

Summary

Oocyte gene expression is a well controlled event that promotes gamete competence to undergo maturation, fertilization, and to support early embryo development, directly affecting reproductive outcomes. Considering that in vivo controlled ovarian stimulation or in vitro maturation (IVM) for the acquisition of mature oocytes has distinct implications for gene expression, we sought to evaluate the effects of these procedures on the expression of competence-related genes in single-cell oocytes. Healthy Nelore cows of reproductive age were synchronized to harvest in vivo matured oocytes; ovaries from slaughtered animals were used to obtain cumulus–oocyte complexes that were in vitro matured. Single-cell gene expression was performed using TaqMan Low-Density Arrays and 42 genes were evaluated. In silico analysis of protein interactions and Gene Ontology (GO) analysis was performed. Reduced gene expression was observed for 24 targets in IVM oocytes when compared with those of in vivo matured oocytes (P < 0.05). Differences ranged from 1.5-fold to 4.8-fold higher in in vivo oocytes and the BMP15 (5.28), GDF9 (6.23), NOBOX (7.25), HSPA8 (7.85) and MSX1 (11.00) showed the greatest fold increases. The strongest score of functional interactions was observed between the CDC20 and CKS2, with the differentially expressed gene CDC20 being the main marker behind GO enrichment. IVM negatively affected the expression of important genes related to oocyte competency, and showed higher expression levels in in vivo matured oocytes. In vivo controlled ovarian stimulation may be a better strategy to achieve proper oocyte competence and increase the success of assisted reproductive technologies.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abedal-Majed, M. A. and Cupp, A. S. (2019). Livestock animals to study infertility in women. Animal Frontiers, 9(3), 2833. doi: 10.1093/af/vfz017 CrossRefGoogle ScholarPubMed
Adams, G. P., Singh, J. and Baerwald, A. R. (2012). Large animal models for the study of ovarian follicular dynamics in women. Theriogenology, 78(8), 17331748. doi: 10.1016/j.theriogenology.2012.04.010 CrossRefGoogle Scholar
Adona, P. R., Leal, C. L. V., Biase, F. H., De Bem, T. H., Mesquita, L. G., Meirelles, F. V., Ferraz, A. L., Furlan, L. R., Monzani, P. S. and Guemra, S. (2016). In vitro maturation alters gene expression in bovine oocytes. Zygote, 24(4), 624633. doi: 10.1017/S0967199415000672 CrossRefGoogle ScholarPubMed
Anckaert, E., De Rycke, M. and Smitz, J. (2013). Culture of oocytes and risk of imprinting defects. Human Reproduction Update, 19(1), 5266. doi: 10.1093/humupd/dms042 CrossRefGoogle ScholarPubMed
Belli, M., Cimadomo, D., Merico, V., Redi, C. A., Garagna, S. and Zuccotti, M. (2013). The NOBOX protein becomes undetectable in developmentally competent antral and ovulated oocytes. International Journal of Developmental Biology, 57(1), 3539. doi: 10.1387/ijdb.120125mz CrossRefGoogle ScholarPubMed
Biase, F. H., Everts, R. E., Oliveira, R., Santos-Biase, W. K., Fonseca Merighe, G. K., Smith, L. C., Martelli, L., Lewin, H. and Meirelles, F. V. (2014). Messenger RNAs in metaphase II oocytes correlate with successful embryo development to the blastocyst stage. Zygote, 22(1), 6979. doi: 10.1017/S0967199412000299 CrossRefGoogle Scholar
Borghol, N., Lornage, J., Blachère, T., Sophie Garret, A. and Lefèvre, A. (2006). Epigenetic status of the H19 locus in human oocytes following in vitro maturation. Genomics, 87(3), 417426. doi: 10.1016/j.ygeno.2005.10.008 CrossRefGoogle ScholarPubMed
Buckett, W. M., Chian, R., Holzer, H., Dean, N., Usher, R. and Tan, S. L. (2007). Obstetric outcomes and congenital abnormalities after in vitro maturation, in vitro fertilization, and intracytoplasmic sperm injection. Obstetrics and Gynecology, 110(4), 885891. doi: 10.1097/01.AOG.0000284627.38540.80 CrossRefGoogle ScholarPubMed
Buckett, W. M., Chian, R. C., Dean, N. L., Sylvestre, C., Holzer, H. E. G. and Tan, S. L. (2008). Pregnancy loss in pregnancies conceived after in vitro oocyte maturation, conventional in vitro fertilization, and intracytoplasmic sperm injection. Fertility and Sterility, 90(3), 546550. doi: 10.1016/j.fertnstert.2007.06.107 CrossRefGoogle ScholarPubMed
Caetano, L. C., Miranda-Furtado, C. L., Batista, L. A., Pitangui-Molina, C. P., Higa, T. T., Padovan, C. C. and Rosa-e-Silva, A. C. J. S. (2019). Validation of reference genes for gene expression studies in bovine oocytes and cumulus cells derived from in vitro maturation. Animal Reproduction, 16(2), 290296. doi: 10.21451/1984-3143-AR2018-0064 CrossRefGoogle ScholarPubMed
Chen, Z., Robbins, K. M., Wells, K. D. and Rivera, R. M. (2013). Large offspring syndrome: A bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith–Wiedemann. Epigenetics, 8(6), 591601. doi: 10.4161/epi.24655 CrossRefGoogle ScholarPubMed
Chen, Z., Hagen, D. E., Elsik, C. G., Ji, T., Morris, C. J., Moon, L. E. and Rivera, R. M. (2015). Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction. Proceedings of the National Academy of Sciences, 112(15), 46184623. doi: 10.1073/pnas.1422088112 CrossRefGoogle ScholarPubMed
De La Fuente, R., Viveiros, M. M., Burns, K. H., Adashi, E. Y., Matzuk, M. M. and Eppig, J. J. (2004). Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Developmental Biology, 275(2), 447458. doi: 10.1016/j.ydbio.2004.08.028 CrossRefGoogle ScholarPubMed
De Resende, L. O. T., Vireque, A. A., Santana, L. F., Moreno, D. A., de Sá Rosa e Silva, A. C., Ferriani, R. A., Scrideli, C. A. and Reis, R. M. (2012). Single-cell expression analysis of BMP15 and GDF9 in mature oocytes and BMPR2 in cumulus cells of women with polycystic ovary syndrome undergoing controlled ovarian hyperstimulation. Journal of Assisted Reproduction and Genetics, 29(10), 10571065. doi: 10.1007/s10815-012-9825-8 CrossRefGoogle ScholarPubMed
De Vos, M., Smitz, J. and Woodruff, T. K. (2014). Fertility preservation in women with cancer. Lancet, 384(9950), 13021310. doi: 10.1016/S0140-6736(14)60834-5 CrossRefGoogle ScholarPubMed
De Vos, M., Grynberg, M., Ho, T. M., Yuan, Y., Albertini, D. F. and Gilchrist, R. B. (2021). Perspectives on the development and future of oocyte IVM in clinical practice. Journal of Assisted Reproduction and Genetics, 38(6), 12651280. doi: 10.1007/s10815-021-02263-5 CrossRefGoogle ScholarPubMed
Dumdie, J. N., Cho, K., Ramaiah, M., Skarbrevik, D., Mora-Castilla, S., Stumpo, D. J., Lykke-Andersen, J., Laurent, L. C., Blackshear, P. J., Wilkinson, M. F. and Cook-Andersen, H. (2018). Chromatin modification and global transcriptional silencing in the oocyte mediated by the mRNA decay activator ZFP36L2. Developmental Cell, 44(3), 392402.e7. doi: 10.1016/j.devcel.2018.01.006.Global Google Scholar
Duranthon, V. and Chavatte-Palmer, P. (2018). Long term effects of ART: What do animals tell us? Molecular Reproduction and Development, 85(4), 348368. doi: 10.1002/mrd.22970 CrossRefGoogle ScholarPubMed
Edwards, R. G. (1965). Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature, 208(5008), 349351. doi: 10.1038/208349a0 CrossRefGoogle ScholarPubMed
Esencan, E., Kallen, A., Zhang, M. and Seli, E. (2019). Translational activation of maternally derived mRNAs in oocytes and early embryos and the role of embryonic poly(A) binding protein (EPAB). Biology of Reproduction, 100(5), 11471157. doi: 10.1093/biolre/ioz034 CrossRefGoogle Scholar
ESHRE Capri Workshop Group. (2014). Birth defects and congenital health risks in children conceived through assisted reproduction technology (ART): A meeting report. Journal of Assisted Reproduction and Genetics, 31(8), 947958. doi: 10.1007/s10815-014-0255-7. Erratum in: (2015 September). Journal of Assisted Reproduction and Genetics, 32(9), 1429. doi: 10.1007/s10815-015-0556-5.CrossRefGoogle Scholar
Evsikov, A. V. and de Evsikova, C. M. (2009). Gene expression during the oocyte-to-embryo transition in mammals. Molecular Reproduction and Development, 76(9), 805818. doi: 10.1002/mrd.21038 CrossRefGoogle ScholarPubMed
Fassnacht, C. and Ciosk, R. (2017). Cell fate maintenance and reprogramming during the oocyte-to-embryo transition. Results and Problems in Cell Differentiation, 59, 269286. doi: 10.1007/978-3-319-44820-6_10 CrossRefGoogle ScholarPubMed
Fauser, B. C. J. M. (2019). Towards the global coverage of a unified registry of IVF outcomes. Reproductive Biomedicine Online, 38(2), 133137. doi: 10.1016/j.rbmo.2018.12.001 CrossRefGoogle ScholarPubMed
Ferré, L. B., Kjelland, M. E., Strøbech, L. B., Hyttel, P., Mermillod, P. and Ross, P. J. (2020). Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal, 14(5), 9911004. doi: 10.1017/S1751731119002775 CrossRefGoogle ScholarPubMed
Gandolfi, F., Brevini, T. A., Cillo, F. and Antonini, S. (2005). Cellular and molecular mechanisms regulating oocyte quality and the relevance for farm animal reproductive efficiency. Revue Scientifique et Technique, 24(1), 413423. doi: 10.20506/rst.24.1.1580 CrossRefGoogle ScholarPubMed
Gao, L., Jia, G., Li, A., Ma, H., Huang, Z., Zhu, S., Hou, Y. and Fu, X. (2017). RNA-Seq transcriptome profiling of mouse oocytes after in vitro maturation and/or vitrification. Scientific Reports, 7(1), 110. doi: 10.1038/s41598-017-13381-5 Google ScholarPubMed
Gennari Verruma, C., Credendio Eiras, M., Fernandes, A., Vila, R. A., Libardi Miranda Furtado, C., Silveira Ramos, E. and Barbosa Lôbo, R. (2021). Folic acid supplementation during oocytes maturation influences in vitro production and gene expression of bovine embryos. Zygote, 29(5), 342349. doi: 10.1017/S0967199421000022 CrossRefGoogle ScholarPubMed
Gilchrist, G. C., Tscherner, A., Nalpathamkalam, T., Merico, D. and LaMarre, J. (2016). MicroRNA expression during bovine oocyte maturation and fertilization. International Journal of Molecular Sciences, 17(3), 396. doi: 10.3390/ijms17030396 CrossRefGoogle ScholarPubMed
Giotti, B., Chen, S. H., Barnett, M. W., Regan, T., Ly, T., Wiemann, S., Hume, D. A. and Freeman, T. C. (2019). Assembly of a parts list of the human mitotic cell cycle machinery. Journal of Molecular Cell Biology, 11(8), 703718. doi: 10.1093/jmcb/mjy063 CrossRefGoogle ScholarPubMed
Gomes, M. V., Gomes, C. C., Pinto, W. and Ramos, E. S. (2007). Methylation pattern at the KvDMR in a child with Beckwith–Wiedemann syndrome conceived by ICSI. American Journal of Medical Genetics. Part A, 143A(6), 625629. doi: 10.1002/ajmg.a.31628 CrossRefGoogle Scholar
Guo, Y., Cai, L., Liu, X., Ma, L., Zhang, H., Wang, B., Qi, Y., Liu, J., Diao, F., Sha, J. and Guo, X. (2022). Single-cell quantitative proteomic analysis of human oocyte maturation revealed high heterogeneity in in vitro matured oocytes. Molecular and Cellular Proteomics, 21(8), 100267. doi: 10.1016/j.mcpro.2022.100267 CrossRefGoogle ScholarPubMed
Hajkova, P., Erhardt, S., Lane, N., Haaf, T., El-Maarri, O., Reik, W., Walter, J. and Surani, M. A. (2002). Epigenetic reprogramming in mouse primordial germ cells. Mechanisms of Development, 117(1–2), 1523. doi: 10.1016/S0925-4773(02)00181-8 CrossRefGoogle ScholarPubMed
Hattori, H., Hiura, H., Kitamura, A., Miyauchi, N., Kobayashi, N., Takahashi, S., Okae, H., Kyono, K., Kagami, M., Ogata, T. and Arima, T. (2019). Association of four imprinting disorders and ART. Clinical Epigenetics, 11(1), 21. doi: 10.1186/s13148-019-0623-3 CrossRefGoogle ScholarPubMed
Heinzmann, J., Mattern, F., Aldag, P., Bernal-Ulloa, S. M., Schneider, T., Haaf, T. and Niemann, H. (2015). Extended in vitro maturation affects gene expression and DNA methylation in bovine oocytes. Molecular Human Reproduction, 21(10), 770782. doi: 10.1093/molehr/gav040 CrossRefGoogle ScholarPubMed
Jansova, D., Tetkova, A., Koncicka, M., Kubelka, M. and Susor, A. (2018). Localization of RNA and translation in the mammalian oocyte and embryo. PLOS ONE, 13(3), e0192544. doi: 10.1371/journal.pone.0192544 CrossRefGoogle ScholarPubMed
Jin, F., Hamada, M., Malureanu, L., Jeganathan, K. B., Zhou, W., Morbeck, D. E. and van Deursen, J. M. (2010). Cdc20 is critical for meiosis I and fertility of female mice. PLOS Genetics, 6(9), e1001147. doi: 10.1371/journal.pgen.1001147 CrossRefGoogle ScholarPubMed
Jones, G. M., Cram, D. S., Song, B., Magli, M. C., Gianaroli, L., Lacham-Kaplan, O., Findlay, J. K., Jenkin, G. and Trounson, A. O. (2008). Gene expression profiling of human oocytes following in vivo or in vitro maturation. Human Reproduction, 23(5), 11381144. doi: 10.1093/humrep/den085 CrossRefGoogle ScholarPubMed
Keefe, D., Kumar, M. and Kalmbach, K. (2015). Oocyte competency is the key to embryo potential. Fertility and Sterility, 103(2), 317322. doi: 10.1016/j.fertnstert.2014.12.115 CrossRefGoogle ScholarPubMed
Kong, A., Frigge, M. L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., Gudjonsson, S. A., Sigurdsson, A., Jonasdottir, A., Jonasdottir, A., Wong, W. S., Sigurdsson, G., Walters, G. B., Steinberg, S., Helgason, H., Thorleifsson, G., Gudbjartsson, D. F., Helgason, A., Magnusson, O. T., Thorsteinsdottir, U. and Stefansson, K. (2012). Rate of de novo mutations and the importance of father’s age to disease risk. Nature, 488(7412), 471475. doi: 10.1038/nature11396 CrossRefGoogle ScholarPubMed
Kopca, T. and Tulay, P. (2021). Association of assisted reproductive technology treatments with imprinting disorders. Global Medical Genetics, 8(1), 16. doi: 10.1055/s-0041-1723085 Google ScholarPubMed
Landim-Alvarenga, F. C. and Maziero, R. R. D. (2014). Control of oocyte maturation. Animal Reproduction, 11(3), 150158.Google Scholar
Langbeen, A., De Porte, H. F., Bartholomeus, E., Leroy, J. L. and Bols, P. E. (2015). Bovine in vitro reproduction models can contribute to the development of (female) fertility preservation strategies. Theriogenology, 84(4), 477489. doi: 10.1016/j.theriogenology.2015.04.009 CrossRefGoogle Scholar
Le Bouffant, R., Souquet, B., Duval, N., Duquenne, C., Hervé, R., Frydman, N., Robert, B., Habert, R. and Livera, G. (2011). Msx1 and Msx2 promote meiosis initiation. Development, 138(24), 53935402. doi: 10.1242/dev.068452 CrossRefGoogle ScholarPubMed
Leibfried, L. and First, N. L. (1979). Characterization of bovine follicular oocytes and their ability to mature in vitro. Journal of Animal Science, 48(1), 7686. doi: 10.2527/jas1979.48176x CrossRefGoogle ScholarPubMed
Li, J., Xu, Y., Zhou, G., Guo, J. and Xin, N. (2011). Natural cycle IVF/IVM may be more desirable for poor responder patients after failure of stimulated cycles. Journal of Assisted Reproduction and Genetics, 28(9), 791795. doi: 10.1007/s10815-011-9597-6 CrossRefGoogle ScholarPubMed
Li, Y., Sena Lopes, J., Fuster, P. C. and Rivera, R. M. (2022). Spontaneous and ART-induced large offspring syndrome: Similarities and differences in DNA methylome. Epigenetics, 120. doi: 10.1080/15592294.2022.2067938 Google ScholarPubMed
Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402408. doi: 10.1006/meth.2001.1262 CrossRefGoogle Scholar
Lonergan, P., Rizos, D., Gutierrez-Adan, A., Fair, T. and Boland, M. P. (2003). Oocyte and embryo quality: Effect of origin, culture conditions and gene expression patterns. Reproduction in Domestic Animals, 38(4), 259267. doi: 10.1046/j.1439-0531.2003.00437.x CrossRefGoogle ScholarPubMed
Luciano, A. M. and Sirard, M. A. (2018). Successful in vitro maturation of oocytes: A matter of follicular differentiation. Biology of Reproduction, 98(2), 162169. doi: 10.1093/biolre/iox149 CrossRefGoogle ScholarPubMed
Lucifero, D., Mertineit, C., Clarke, H. J., Bestor, T. H. and Trasler, J. M. (2002). Methylation dynamics of imprinted genes in mouse germ cells. Genomics, 79(4), 530538. doi: 10.1006/geno.2002.6732 CrossRefGoogle ScholarPubMed
Luke, B., Brown, M. B., Nichols, H. B., Schymura, M. J., Browne, M. L., Fisher, S. C., Forestieri, N. E., Rao, C., Yazdy, M. M., Gershman, S. T., Ethen, M. K., Canfield, M. A., Williams, M., Wantman, E., Oehninger, S., Doody, K. J., Eisenberg, M. L., Baker, V. L. and Lupo, P. J. (2020). Assessment of birth defects and cancer risk in children conceived via in vitro fertilization in the US. JAMA Network. JAMA Network Open, 3(10), e2022927. doi: 10.1001/jamanetworkopen.2020.22927 CrossRefGoogle Scholar
MacLennan, M., Crichton, J. H., Playfoot, C. J. and Adams, I. R. (2015). Oocyte development, meiosis and aneuploidy. Seminars in Cell and Developmental Biology, 45, 6876. doi: 10.1016/j.semcdb.2015.10.005 CrossRefGoogle ScholarPubMed
Marei, W. F. A., Van Raemdonck, G., Baggerman, G., Bols, P. E. J. and Leroy, J. L. M. R. (2019). Proteomic changes in oocytes after in vitro maturation in lipotoxic conditions are different from those in cumulus cells. Scientific Reports. Springer, 1, 9, 3673. doi: 10.1038/s41598-019-40122-7 CrossRefGoogle Scholar
Mi, H., Muruganujan, A., Huang, X., Ebert, D., Mills, C., Guo, X. and Thomas, P. D. (2019). Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nature Protocols. Springer, 14(3), 703721. doi: 10.1038/s41596-019-0128-8 CrossRefGoogle ScholarPubMed
Owen, C. M. and Segars, J. H. (2009). Imprinting disorders and assisted reproductive technology. Seminars in Reproductive Medicine, 27(5), 417428. doi: 10.1055/s-0029-1237430 CrossRefGoogle ScholarPubMed
Reik, W., Dean, W. and Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science, 293(5532), 10891093. doi: 10.1126/science.1063443 CrossRefGoogle ScholarPubMed
Rizos, D., Ward, F., Duffy, P., Boland, M. P. and Lonergan, P. (2002). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: Implications for blastocyst yield and blastocyst quality. Molecular Reproduction and Development, 61(2), 234248. doi: 10.1002/mrd.1153 CrossRefGoogle ScholarPubMed
Sánchez, F., Romero, S., De Vos, M., Verheyen, G. and Smitz, J. (2015). Human cumulus-enclosed germinal vesicle oocytes from early antral follicles reveal heterogeneous cellular and molecular features associated with in vitro maturation capacity. Human Reproduction, 30(6), 13961409. doi: 10.1093/humrep/dev083 CrossRefGoogle ScholarPubMed
Sanchez, F., Le, A. H., Ho, V., Romero, S., Van Ranst, H., De Vos, M., Gilchrist, R. B., Ho, T. M., Vuong, L. N. and Smitz, J. (2019). Biphasic in vitro maturation (CAPA-IVM) specifically improves the developmental capacity of oocytes from small antral follicles. Journal Assisted Reproductive and Genetics, 36(10), 21352144. doi: 10.1007/s10815–019–01551–5 CrossRefGoogle ScholarPubMed
Sato, A., Otsu, E., Negishi, H., Utsunomiya, T. and Arima, T. (2007). Aberrant DNA methylation of imprinted loci in superovulated oocytes. Human Reproduction, 22(1), 2635. doi: 10.1093/humrep/del316 CrossRefGoogle ScholarPubMed
Sirard, M. A., Richard, F., Blondin, P. and Robert, C. (2006). Contribution of the oocyte to embryo quality. Theriogenology, 65(1), 126136. doi: 10.1016/j.theriogenology.2005.09.020 CrossRefGoogle ScholarPubMed
Susor, A., Jansova, D., Cerna, R., Danylevska, A., Anger, M., Toralova, T., Malik, R., Supolikova, J., Cook, M. S., Oh, J. S. and Kubelka, M. (2015). Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nature Communications. Nature Publishing Group, 6(1), 6078. doi: 10.1038/ncomms7078 CrossRefGoogle ScholarPubMed
Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N. T., Roth, A., Bork, P., Jensen, L. J. and von Mering, C. (2017). The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research, 45(D1), D362D368. doi: 10.1093/nar/gkw937 CrossRefGoogle ScholarPubMed
Tang, Q., Pan, F., Yang, J., Fu, Z., Lu, Y., Wu, X., Han, X., Chen, M., Lu, C., Xia, Y., Wang, X. and Wu, W. (2018). Idiopathic male infertility is strongly associated with aberrant DNA methylation of imprinted loci in sperm: A case-control study. Clinical Genetics, 10, 110. doi: 10.1186/s13148–018–0568-y Google ScholarPubMed
Tesfaye, D., Ghanem, N., Carter, F., Fair, T., Sirard, M. A., Hoelker, M., Schellander, K. and Lonergan, P. (2009). Gene expression profile of cumulus cells derived from cumulus–oocyte complexes matured either in vivo or in vitro. Reproduction, Fertility and Development, 21(3), 451461. doi: 10.1071/RD08190 CrossRefGoogle ScholarPubMed
Vuong, L. N., Ho, T. M., Gilchrist, R. B. and Smitz, J. (2019). The place of in vitro maturation in assisted reproductive technology. Fertility and Reproduction, 01(1), 1115. doi: 10.1142/S2661318219300022 CrossRefGoogle Scholar
Walker, B. N. and Biase, F. H. (2020). The blueprint of RNA storages relative to oocyte developmental competence in cattle (Bos taurus). Biology of Reproduction, 102(4), 784794. doi: 10.1093/biolre/ioaa015 CrossRefGoogle ScholarPubMed
Walls, M. L., Ryan, J. P., Keelan, J. A. and Hart, R. (2015). In vitro maturation is associated with increased early embryo arrest without impairing morphokinetic development of useable embryos progressing to blastocysts. Human Reproduction, 30(8), 18421849. doi: 10.1093/humrep/dev125 CrossRefGoogle ScholarPubMed
Wang, J., Fan, H. C., Behr, B. and Quake, S. R. (2012). Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell, 150(2), 402412. doi: 10.1016/j.cell.2012.06.030 CrossRefGoogle ScholarPubMed
Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W., Liaw, A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., Venables, B. and Galili, T. (2015). gplots: various R programming tools for plotting data. R package version 2.17.0. Available online: http://cran.r-project.org/package=gplots Google Scholar
Watson, A. J. (2007). Oocyte cytoplasmic maturation: A key mediator of oocyte and embryo developmental competence. Journal of Animal Science, 85(suppl_13), Suppl., E1E3. doi: 10.2527/jas.2006-432 CrossRefGoogle ScholarPubMed
Wei, L. N., Liang, X., Fang, C. and Zhang, M. (2011). Abnormal expression of growth differentiation factor 9 and bone morphogenetic protein 15 in stimulated oocytes during maturation from women with polycystic ovary syndrome. Fertility and Sterility, 96(2), 464468. doi: 10.1016/j.fertnstert.2011.05.036 CrossRefGoogle ScholarPubMed
Wei, L. N., Huang, R., Li, L. L., Fang, C., Li, Y. and Liang, X. Y. (2014). Reduced and delayed expression of GDF9 and BMP15 in ovarian tissues from women with polycystic ovary syndrome. Journal of Assisted Reproduction and Genetics, 31(11), 14831490. doi: 10.1007/s10815-014-0319-8 CrossRefGoogle ScholarPubMed
Yang, W. L., Li, J., An, P. and Lei, A. M. (2014a). CDC20 downregulation impairs spindle morphology and causes reduced first polar body emission during bovine oocyte maturation. Theriogenology, 81(4), 535544. doi: 10.1016/j.theriogenology.2013.11.005 CrossRefGoogle ScholarPubMed
Yang, C. S., Chang, K. Y. and Rana, T. M. (2014b). Genome-wide functional analysis reveals factors needed at the transition steps of induced reprogramming. Cell Reports, 8(2), 327337. doi: 10.1016/j.celrep.2014.07.002 CrossRefGoogle ScholarPubMed
Yu, B., Doni Jayavelu, N., Battle, S. L., Mar, J. C., Schimmel, T., Cohen, J. and Hawkins, R. D. (2020). Single-cell analysis of transcriptome and DNA methylome in human oocyte maturation. PLOS ONE, 15(11), e0241698. doi: 10.1371/journal.pone.0241698 CrossRefGoogle ScholarPubMed
Zhao, L., Xue, S., Yao, Z., Shi, J., Chen, B., Wu, L., Sun, L., Xu, Y., Yan, Z., Li, B., Mao, X., Fu, J., Zhang, Z., Mu, J., Wang, W., Du, J., Liu, S., Dong, J., Wang, W., Li, Q., He, L., Jin, L., Liang, X., Kuang, Y., Sun, X., Wamg, L. and Sang, Q. (2020). Biallelic mutations in CDC20 cause female infertility characterized by abnormalities in oocyte maturation and early embryonic development. Protein and Cell, 11(12), 921927. doi: 10.1007/s13238-020-00756-0 CrossRefGoogle ScholarPubMed
Supplementary material: File

Caetano et al. supplementary material

Tables S1-S3

Download Caetano et al. supplementary material(File)
File 21.7 KB