Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T01:24:34.811Z Has data issue: false hasContentIssue false

Polyspermy in Bufo arenarum oocytes matured in vitro

Published online by Cambridge University Press:  26 September 2008

J. Oterino
Affiliation:
Instituto Superior de Investigaciones Biológicas (INSIBIO), Departamento de Biología del Desarrollo, Universidad Nacional de Tucumán, Argentina
G. Sánchez Toranzo
Affiliation:
Instituto Superior de Investigaciones Biológicas (INSIBIO), Departamento de Biología del Desarrollo, Universidad Nacional de Tucumán, Argentina
L. Zelarayán
Affiliation:
Instituto Superior de Investigaciones Biológicas (INSIBIO), Departamento de Biología del Desarrollo, Universidad Nacional de Tucumán, Argentina
M.I. Bühler
Affiliation:
Instituto Superior de Investigaciones Biológicas (INSIBIO), Departamento de Biología del Desarrollo, Universidad Nacional de Tucumán, Argentina

Summary

Full-grown ovarian oocytes of the amphibian Bufo arenarum were induced to mature in vitro by removing the follicular layers (spontaneous maturation) or by treatment with progesterone (hormone-induced maturation). These oocytes were then treated with trypsin and inseminated with homologous spermatozoa. Oocytes matured in vivo that had not undergone any influence of the oviducts (coelomic oocytes), inseminated under the same experimental conditions, were used as controls. The results show that oocytes induced to mature in vitro and exhibiting apparently normal signs of activation were polyspermic. In fact, 2 h after insemination numerous functioning pronuclei could be observed in the animal hemisphere. These results suggest that even though the oocytes which matured in vitro were able to undergo activation after insemination, they were unable to establish an effective block to polyspermy.

Type
Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbieri, F.D. & Oterino, J.M. (1972). A study of the diffusible factor released by the jelly of the egg of the toad, Bufo arenarum. Dev. Growth Differ. 14, 107–17.CrossRefGoogle ScholarPubMed
Barbieri, F.D. & Schugurensky, A.E. (1966). Cambios estructurales en el ovocito de Bufo arenarum durante la fecundación. Arch. Bioquímica y Farmacia (Tucumán) 13, 215–22.Google Scholar
Bühler, M.I., Petrino, T. & Legname, A. (1987). Sperm nuclear transformation and aster formation related to metabolic behavior in amphibian eggs. Dev. Growth Differ. 29, 177–86.CrossRefGoogle ScholarPubMed
Bühler, M.I., Zelarayán, L. & Legname, A. (1994). Effect of cytoplasmic components upon sperm aster development. Dev. Biol. 164, 398401.CrossRefGoogle ScholarPubMed
Cabada, M.O., Mariano, M.I. & Gómez, M.I. (1987). Cortical granule products and fertility prevention in Bufo arenarum oocytes. I. Exp. Zool. 241, 359–67.CrossRefGoogle Scholar
Cross, N.I. & Elinson, R.P. (1980). A fast block to polyspermy in frogs mediated by changes in the membrane potential. Dev. Biol. 75, 187–98.CrossRefGoogle ScholarPubMed
Elinson, R.P. (1973). Fertilization of frog body cavity eggs enhanced by treatments affecting the vitelline coat. J. Exp. Zool. 183, 291302.CrossRefGoogle Scholar
Elinson, R.P. (1977). Fertilization of immature frog eggs: cleavage and development following subsequent activation. J. Embryol. Exp. Morphol. 37, 187201.Google ScholarPubMed
Elinson, R.P. (1980). The amphibian egg cortex in fertilization and early development. In The Cell Surface: Mediator of Developmental Processes, ed. Subtelny, S. & Wessels, N.K., pp. 217–34. New York: Academic Press.CrossRefGoogle Scholar
Gard, D.L. (1991). Organization, nucleation, and acetylation of microtubules in Xenopus laevis oocytes: a study by confocal immunfluorescence microscopy. Dev. Biol. 143, 346–62.CrossRefGoogle Scholar
Giunta, S., Zelarayán, L. & Bühler, M.I. (1996). Microtubule organization and cold sensibility during maturation of Bufo arenarum oocytes: an immunocytochemical study using anti-β-tubulin. Biocell 20, 201–9.Google Scholar
Gómez, M.I. (1992). Estructuras involucradas en el bloqueo de la polispermia en ovocitos de Bufo arenarum. Doctoral dissertation, Tucumán University, San Miguel de Tucumán, Argentina.Google Scholar
Gómez, M.I. & Cabada, M.O. (1994). Amphibian cross-fertilization and polyspermy. J. Exp. Zool. 269, 560–5.CrossRefGoogle ScholarPubMed
Gómez, M.I., Santolaya, R.C. & Cabada, M.O. (1984). Exocytosis of cortical granules from activated oocytes of the toad, Bufo arenarum. Cell Tissue Res. 237, 191–4.Google ScholarPubMed
Grey, R.D., Wolf, D.P. & Hedrick, J.L. (1974). Formation and structure of the fertilization envelope in Xenopus laevis. Dev. Biol. 36, 4461.CrossRefGoogle ScholarPubMed
Grey, R.D., Working, P.K. & Hedrick, J.L. (1976). Evidence that the fertilization envelope blocks sperm entry in eggs of Xenopus laevis. Dev. Biol. 54, 5260.CrossRefGoogle ScholarPubMed
Grey, R.D., Bastiani, M.J., Webb, D.J. & Schertel, E.R. (1982). An electrical block is required to prevent polyspermy in eggs fertilized by natural mating of Xenopus laevis. Dev. Biol. 89, 475–84.CrossRefGoogle ScholarPubMed
Hirai, S., Nagahama, Y., Kishimoto, T. & Kanatani, H. (1981). Cytoplasmic maturity revealed by the structural changes in incorporated spermatozoa during the course of starfish maturation. Dev. Growth Differ. 23, 465–78.CrossRefGoogle Scholar
Iwamatsu, T. & Chang, M.C. (1972). Sperm penetration in vitro of mouse oocytes at various times during maturation. J. Reprod. Fertil. 31, 237–47.CrossRefGoogle ScholarPubMed
Iwao, Y., Ito, S. & Katagiri, C. (1981). Electrical properties of toad oocytes during maturation and activation. Dev. Growth Differ. 23, 89100.CrossRefGoogle ScholarPubMed
Jaffe, L.A., Cross, N.L. & Picheral, B. (1983). Studies of the voltage-dependent polyspermy block using cross-species fertilization of amphibians. Dev. Biol. 98, 319–26.CrossRefGoogle ScholarPubMed
Jessus, C., Huchon, D. & Ozon, R. (1986). Distribution of microtubules during the breakdown of the nuclear envelope of the Xenopus oocyte: an immunocytochemical study. Biol. Cell 56, 113–20.CrossRefGoogle ScholarPubMed
Katagiri, C. (1959). Cortical change at fertilization in the egg of the grass frog, Rana temporaria. J. Fac. Sci. Hokkaido Univ. Ser. VI Zool. 14, 166–74.Google Scholar
Katagiri, C. (1974). A high frequency of fertilization in premature and mature coelomic toad eggs after enzymic removal of vitelline membrane. I. Embryol. Exp. Morphol. 31, 573–87.Google ScholarPubMed
Katagiri, C. & Moriya, Y. (1976). Spermatozoan response to the toad egg matured after removal of germinal vesicle. Dev. Biol. 50, 235–41.CrossRefGoogle Scholar
Legname, A. & Bühler, M.I. (1978). Metabolic behaviour and cleavage capacity in the amphibian egg. J. Embryol. Exp. Morphol. 47, 161–8.Google ScholarPubMed
Lin, Y.W. & Schuetz, A.W. (1985). Spontaneous oocyte maturation in Rana pipiens: estrogen and follicle wall involvement. Gamete Res. 12, 1128.CrossRefGoogle Scholar
Mariano de Bossini, M. (1987). Estudio ultraestructural citoquímico cuantitativo del cortex, membrana plasmática y envolturas no celulares del ovocito de Bufo arenarum. Doctoral dissertation, Tucumán University Argentina.Google Scholar
Petrino, T., Bühler, M.I., Budeguer de Atenor, M.S. & Legname, A. (1983). Seasonal variations and metabolic behaviour during Bufo arenarum oogenesis. Acta Embryol. Morphol. Exp. NS 4, 1726.Google ScholarPubMed
Petrino, T., Bühler, M.I. & Legname, A. (1984). Metabolic behaviour and activation capacity in the amphibian egg. Comunicaciones Biol. 3, 231–40.Google Scholar
Raisman, J. & Pisanó, A. (1970). Fertilization of jelly-less Bufo arenarum oocytes in the presence of high sperm concentration. Acta Embryol. Morphol. Exp. 1, 311.Google Scholar
Shapiro, B.M. & Eddy, E.M. (1980). When sperm meets egg: biochemical mechanisms of gamete interaction. Int. Rev. Cytol. 66, 257302.CrossRefGoogle ScholarPubMed
Schlichter, L.C. & Elinson, R.P. (1981). Electrical responses of immature and mature Rana pipiens oocytes to sperm and other activating stimuli. Dev. Biol. 83, 3341.CrossRefGoogle ScholarPubMed
Skoblina, M.N. (1969). Independence of the cortex maturation from germinal vesicle material during the maturation of amphibian and sturgeon oocytes. Exp. Cell Res. 55, 142–4.CrossRefGoogle ScholarPubMed
Smith, L.D. & Ecker, R.E. (1969). Role of the oocyte nucleus in physiological maturation in Rana pipiens. Dev. Biol. 19, 281309.Google ScholarPubMed
Subtelny, S. & Bradt, C. (1961). Transplantations of blastula nuclei into activated eggs from the body cavity and from the uterus of Rana pipiens. II. Development of the recipient body cavity eggs. Den. Biol. 3, 96114.CrossRefGoogle Scholar
Webb, D.J. & Nucciteli, R. (1985). Fertilization potential and electrical properties of the Xenopus laevis egg. Dev. Biol. 107, 395406.CrossRefGoogle ScholarPubMed
Zelarayán, L., Oterino, J & Bühler, M.I. (1995). Spontaneous maturation in Bufo arenarum oocytes: follicle wall involvement, respiratory activity and seasonal influences. J. Exp. Zool. 272, 356–62.CrossRefGoogle ScholarPubMed