Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T06:51:51.511Z Has data issue: false hasContentIssue false

Safety of brilliant cresyl blue staining protocols on human granulosa and cumulus cells

Published online by Cambridge University Press:  29 April 2015

Diego Duarte Alcoba
Affiliation:
Laboratório de Biologia Molecular Endócrina e Tumoral, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil. Laboratório de Ginecologia e Obstetrícia Molecular, Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, UFRGS, Brazil.
Maiara Conzatti
Affiliation:
Laboratório de Ginecologia e Obstetrícia Molecular, Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, UFRGS, Brazil.
Gustavo Dias Ferreira
Affiliation:
Laboratório de Biologia Molecular Endócrina e Tumoral, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil. Laboratório de Ginecologia e Obstetrícia Molecular, Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, UFRGS, Brazil.
Anita Mylius Pimentel
Affiliation:
Associação Hospitalar Moinhos de Vento – Núcleo de Reprodução Humana – Rua Ramiro Barcelos, 910–8º andar – Cj. 905, Porto Alegre, Brazil.
Ana Paula Kussler
Affiliation:
Associação Hospitalar Moinhos de Vento – Núcleo de Reprodução Humana – Rua Ramiro Barcelos, 910–8º andar – Cj. 905, Porto Alegre, Brazil.
Edison Capp*
Affiliation:
Laboratório de Ginecologia e Obstetrícia Molecular, Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, UFRGS, Brazil. Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Heidelberg, Heidelberg, Germany.
Helena von Eye Corleta
Affiliation:
Laboratório de Ginecologia e Obstetrícia Molecular, Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, UFRGS, Brazil. Associação Hospitalar Moinhos de Vento – Núcleo de Reprodução Humana – Rua Ramiro Barcelos, 910–8º andar – Cj. 905, Porto Alegre, Brazil.
Ilma Simoni Brum
Affiliation:
Laboratório de Biologia Molecular Endócrina e Tumoral, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil. Laboratório de Ginecologia e Obstetrícia Molecular, Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, UFRGS, Brazil.
*
All correspondence to: Edison Capp. Serviço de Ginecologia e Obstetrícia – Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350/11º andar, Porto Alegre, RS, CEP 90035–903, Brazil. Tel:/Fax: +55 51 33598117. E-mail: edcapp@ufrgs.br

Summary

The selection of human immature oocytes destined for in vitro maturation (IVM) is performed according to their cumulus–oocyte complex (COC) morphology. In animal models, oocyte pre-selection with brilliant cresyl blue (BCB) staining improves fertilization and blastocyst rates and even increases the number of calves born. As the granulosa cells and cumulus cells (GCs and CCs) have a close relationship with the oocyte and are available in in vitro fertilization (IVF) programs, applying BCB staining to these cells may help to elucidate whether BCB shows toxicity to human oocytes and to determine the safest protocol for this dye. GCs and CCs were isolated from 24 patients who underwent controlled ovarian stimulation. After 48 h, cells were exposed to: Dulbecco's Modified Eagle Medium (DMEM) with or without phenol red, DPBS and mDPBS for 60 min; 13, 20 and 26 μM BCB for 60 min; and 60, 90 or 120 min to 13 μM BCB. Cellular viability was tested using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) and trypan blue assays. The 20 and 26 μM BCB exposures resulted in lower cell viability, similar to when cells were exposed to BCB for 90 or 120 min. GCs and CCs viabilities were equal among control group and 13 μM BCB group after 60 min. BCB staining was not toxic to GCs and CCs when the regime of 13 μM BCB for 60 min was used. Due to the close molecular/biochemical relationship between these cells and the gamete, we propose that it is unlikely that the use of BCB could interfere with the viability/health of human oocytes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agdi, M., Zarei, A., Al-Sannan, B., Tulandi, T. & Tan, S.L. (2010). Effects of ovarian puncture for in vitro maturation on subsequent in vitro fertilization cycle in women with polycystic ovaries. Fertil. Steril. 94, 381–3.Google Scholar
Alcoba, D.D., da Rosa Braga, B.L., Sandi-Monroy, N.L., Proença, L.A., Felix Lopes, R.F. & de Oliveira, A.T. (2011). Selection of Rattus norvegicus oocytes for in vitro maturation by brilliant cresyl blue staining. Zygote 21, 238–45.Google Scholar
Alm, H., Torner, H., Lohrke, B., Viergutz, T., Ghoneim, I. & Kanitz, W. (2005). Bovine blastocyst development rate in vitro is influenced by selection of oocytes by brillant cresyl blue staining before IVM as indicator for glucose-6-phosphate dehydrogenase activity. Theriogenology 63, 2194–205.CrossRefGoogle ScholarPubMed
Alvarez, G.M., Ferretti, E.L., Gutnisky, C., Dalvit, G.C. & Cetica, P.D. (2012). Modulation of glycolysis and the pentose phosphate pathway influences porcine oocyte in vitro maturation. Reprod. Domest. Anim. 48, 545–53.Google Scholar
Ben-Ami, I., Komsky, A., Bern, O., Kasterstein, E., Komarovsky, D. & Ron-El, R. (2010). In vitro maturation of human germinal vesicle-stage oocytes: role of epidermal growth factor-like growth factors in the culture medium. Hum. Reprod. 26, 76–81.CrossRefGoogle Scholar
Bhojwani, S., Alm, H., Torner, H., Kanitz, W. & Poehland, R. (2007). Selection of developmentally competent oocytes through brilliant cresyl blue stain enhances blastocyst development rate after bovine nuclear transfer. Theriogenology 67, 341–5.Google Scholar
Catalá, M.T., Izquierdo, D., Uzbekova, S., Morató, R., Roura, M., Romaguera, R., Papillier, P. & Paramio, M.T. (2011). Brilliant cresyl blue stain selects largest oocytes with highest mitochondrial activity, maturation-promoting factor activity and embryo developmental competence in prepubertal sheep. Reproduction 142, 517–27.CrossRefGoogle ScholarPubMed
Catalá, M.G., Izquierdo, D., Rodríguez-Prado, M., Hammami, S. & Paramio, M.T. (2012). Effect of oocyte quality on blastocyst development after in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) in a sheep model. Fertil. Steril. 97, 1004–8.Google Scholar
Chian, R.C., Buckett, W.M. & Tan, S.L. (2004). In-vitro maturation of human oocytes. Reprod. Biomed. Online 8, 148–66.CrossRefGoogle ScholarPubMed
Egerszegi, I., Alm, H., Rátky, J., Heleil, B., Brüssow, K. & Torner, H. (2010). Meiotic progression, mitochondrial features and fertilisation characteristics of porcine oocytes with different G6PDH activities. Reprod. Fertil. Dev. 22, 830–8.CrossRefGoogle ScholarPubMed
Ericsson, S.A., Boice, M.L., Funahashi, H. & Day, B.N. (1993). Assessment of porcine oocytes using brilliant cresyl blue. Theriogenology 39, 214.Google Scholar
Fuhrmeister, I.P., Branchini, G., Pimentel, A.M., Ferreira, G.D., Capp, E., Brum, I.S. & Corleta, H.E. (2014). Human granulosa cells: insulin and insulin-like growth factor-1 receptors and aromatase expression modulation by metformin. Gynecol. Obstet. Invest. 77, 156–62.CrossRefGoogle ScholarPubMed
Goovaerts, I., Leroy, J., Jorssen, E. & Bols, P. (2010). Noninvasive bovine oocyte quality assessment: possibilities of a single oocyte culture. Theriogenology. 79, 1509–20.Google Scholar
Gosden, R., Krapez, J. & Briggs, D. (1997). Growth and development of the mammalian oocyte. Bioessays 19, 875–82.Google Scholar
Huang, J.Y., Chian, R.C., Gilbert, L., Fleiszer, D., Holzer, H., Dermitas, E., Elizur, S.E., Gidoni, Y., Levin, D., Son, W.Y. & Tan, S.L. (2010). Retrieval of immature oocytes from unstimulated ovaries followed by in vitro maturation and vitrification: A novel strategy of fertility preservation for breast cancer patients. Am. J. Surg. 200, 177–83.Google Scholar
Kempisty, B., Jackowska, M., Piotrowska, H., Antosik, P., Woźna, M., Bukowska, D., Brüssow, K.P. & Jaśkowski, J.M. (2011). Zona pellucida glycoprotein 3 (pZP3) and integrin β2 (ITGB2) mRNA and protein expression in porcine oocytes after single and double exposure to brilliant cresyl blue test. Theriogenology 75, 1525–35.CrossRefGoogle ScholarPubMed
Manjunatha, B., Gupta, P., Devaraj, M., Ravindra, J. & Nandi, S. (2007). Selection of developmentally competent buffalo oocytes by brilliant cresyl blue staining before IVM. Theriogenology 68, 1299–304.Google Scholar
Mlodawska, W., Pawlowska, A. & Kochan, J. (2005). Meiotic competence of mare oocytes selected using the brilliant cresyl blue test. In Proceedings of a Workshop on International Equine Gamete Group, Kühlungsborn, Germany, 18–21 September 2005. Alm, H.; Torner, H.; Wade, J. F. (eds). Havemeyer Foundation Monograph Series 2006 no. 18, pp. 21–24.Google Scholar
Mota, G., Batista, R., Serapião, R., Boité, M., Viana, J., Torres, C. & de Almeida Camargo, L. (2010). Developmental competence and expression of the MATER and ZAR1 genes in immature bovine oocytes selected by brilliant cresyl blue. Zygote 18, 209–16.Google Scholar
Pujol, M., Lopez-Bejar, M. & Paramio, M. (2004). Developmental competence of heifer oocytes selected using the brilliant cresyl blue (BCB) test. Theriogenology 61, 735–44.CrossRefGoogle ScholarPubMed
Riss, T.L., Moravec, R.A., Niles, A.L., Benink, H.A., Worzella, T.J. & Minor, L. (2013). Cell viability assays. In Assay Guidance Manual, Sittampallam, G.S. et al. (eds) Eli Lilly & Company and the National Center for Advancing Translational Sciences, pp. 123.Google Scholar
Rodriguez-Gonzalez, E., Lopez-Bejar, M., Velilla, E. & Paramio, M. (2002). Selection of prepubertal goat oocytes using the brilliant cresyl blue test. Theriogenology 57, 1397–409.Google Scholar
Sathananthan, A., Selvaraj, K., Girijashankar, M., Ganesh, V., Selvaraj, P. & Trounson, A. (2006). From oogonia to mature oocytes: Inactivation of the maternal centrosome in humans. Microscopy Res. Techn. 69, 396407.Google Scholar
Silva, D.S., Rodriguez, P., Galuppo, A., Arruda, N.S. & Rodrigues, J.L. (2011). Selection of bovine oocytes by brilliant cresyl blue staining: effect on meiosis progression, organelle distribution and embryo development.. Zygote 21: 250–5.Google Scholar
Su, J., Wang, Y., Li, R., Peng, H., Hua, S., Li, Q., Quan, F., Guo, Z. & Zhang, Y. (2012). Oocytes selected using BCB staining enhance nuclear reprogramming and the in vivo development of SCNT embryos in cattle. PLoS One 7, e36181.CrossRefGoogle ScholarPubMed
Sugulle, A., Dochi, O. & Kayama, H. (2008). Developmental competence of bovine oocytes selected by brilliant cresyl blue staining: effect on the presence of corpus luteum on embryo development. J. Mammalian Ovarian Res. 25, 50–5.Google Scholar
Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M. & de Kruif, A. (2002). Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 61, 414–24.Google Scholar
Wang, L., Lin, J., Huang, J., Wang, J., Zhao, Y. & Chen, T. (2012). Selection of ovine oocytes by brilliant cresyl blue staining. J. Biomed. Biotechnol. 2012, 161372.Google Scholar
Wongsrikeao, P., Otoi, T., Yamasaki, H., Agung, B., Taniguchi, M., Naoi, H., Shimizu, R. & Nagai, T. (2006). Effects of single and double exposure to brilliant cresyl blue on the selection of porcine oocytes for in vitro production of embryos. Theriogenology 66, 366–72.Google Scholar
Wu, Y., Liu, Y., Zhou, P., Lan, G., Han, D., Miao, D. & Tan, J. (2007). Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: a study using the mouse model. Cell Res. 17, 722–31.Google Scholar