Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T23:01:04.778Z Has data issue: false hasContentIssue false

Temporal expression of pluripotency-associated transcription factors in sheep and cattle preimplantation embryos

Published online by Cambridge University Press:  23 July 2018

P.G.C. Silva
Affiliation:
Laboratório de Biotécnicas Reprodutivas, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Brasil
M.T. Moura*
Affiliation:
Laboratório de Biotécnicas Reprodutivas, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Brasil
R.L.O. Silva
Affiliation:
Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Brasil
P.S. Nascimento
Affiliation:
Laboratório de Biotécnicas Reprodutivas, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Brasil
J.B. Silva
Affiliation:
Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Brasil
J.C. Ferreira-Silva
Affiliation:
Laboratório de Biotécnicas Reprodutivas, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Brasil
L.F. Cantanhêde
Affiliation:
Laboratório de Biotécnicas Reprodutivas, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Brasil
M.S. Chaves
Affiliation:
Laboratório de Biotécnicas Reprodutivas, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Brasil
A.M. Benko-Iseppon
Affiliation:
Laboratório de Biotécnicas Reprodutivas, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Brasil
M.A.L. Oliveira
Affiliation:
Laboratório de Biotécnicas Reprodutivas, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Brasil
*
All correspondence to: M.T. Moura. Email: marcelotmoura@gmail.com

Summary

Pluripotency-associated transcription factors (PATFs) modulate gene expression during early mammalian embryogenesis. Despite a strong understanding of PATFs during mouse embryogenesis, limited progress has been made in ruminants. This work aimed to describe the temporal expression of eight PATFs during both sheep and cattle preimplantation development. Transcript availability of PATFs was evaluated by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in eggs, cleavage-stage embryos, morulae, and blastocysts. Transcripts of five genes were detected in all developmental stages of both species (KLF5, OCT4, RONIN, ZFP281, and ZFX). Furthermore, CMYC was detected in all cattle samples but was found from cleavage-stage onwards in sheep. In contrast, NR0B1 was detected in all sheep samples but was not detected in cattle morulae. GLIS1 displayed the most significant variation in temporal expression between species, as this PATF was only detected in cattle eggs and sheep cleavage-stage embryos and blastocysts. In silico analysis suggested that cattle and sheep PATFs share similar size, isometric point and molecular weight. A phenetic analysis showed two patterns of PATF clustering between cattle and sheep, among several mammalian species. In conclusion, the temporal expression of pluripotency-associated transcription factors differs between sheep and cattle, suggesting species-specific regulation during preimplantation development.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, T., Kumar, D., Singh, M.K., Shah, R.A., Chauhan, M.S., Manik, R.S., Singla, S.K. & Palta, P. (2011) Buffalo (Bubalus bubalis) embryonic stem cell-like cells and preimplantation embryos exhibit comparable expression of pluripotency-related antigens. Reprod. Domest. Anim. 46, 5058.Google Scholar
Bebbere, D., Bogliolo, L., Ariu, F., Fois, S., Leoni, G.G., Succu, S., Berlinguer, F. & Ledda, S. (2010) Different temporal gene expression patterns for ovine pre-implantation embryos produced by parthenogenesis or in vitro fertilization. Theriogenology 74, 712723.Google Scholar
Berg, D.K., Smith, C.S., Pearton, D.J., Wells, D.N., Broadhurst, R., Donnison, M. & Pfeffer, P.L. (2011) Trophectoderm lineage determination in cattle. Dev. Cell 20, 244255.Google Scholar
Bernardi, M.L., Cotinot, C., Payen, E. & Delouis, C. (1996) Transcription of Y- and X-linked genes in preimplantation ovine embryos. Mol. Reprod. Dev. 45, 132–8.Google Scholar
Bian, Q. & Cahan, P. (2016) Computational tools for stem cell biology. Trends Biotechnol. 34, 9931009.Google Scholar
Chou, K.C. & Shen, H.B. (2008) Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat. Prot. 3, 153162.Google Scholar
Clipsham, R., Niakan, K. & McCabe, E.R. (2004) NR0B1 and its network partners are expressed early in murine embryos prior to steroidogenic axis organogenesis. Gene Express . Patterns 4, 314.Google Scholar
Cockburn, K. & Rossant, J. (2010) Making the blastocyst: lessons from the mouse. J. Clin. Invest 120, 9951003.Google Scholar
Dang-Nguyen, T.Q. & Torres-Padilla, M.E. (2015) How cells build totipotency and pluripotency: nuclear, chromatin and transcriptional architecture. Curr. Opin. Cell Biol. 34, 915.Google Scholar
Dejosez, M., Krumenacker, J.S., Zitur, L.J., Passeri, M., Chu, L.F., Songyang, Z., Thomson, J.A. & Zwaka, T.P. (2008) Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell 133, 11621174.Google Scholar
Dejosez, M., Levine, S.S., Frampton, G.M., Whyte, W.A., Stratton, S.A., Barton, M.C., Gunaratne, P.H., Young, R.A. & Zwaka, T.P. (2010) Ronin/Hcf-1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells. Genes Dev. 24, 14791484.Google Scholar
Ema, M., Mori, D., Niwa, H., Hasegawa, Y., Yamanaka, Y., Hitoshi, S., Mimura, J., Kawabe, Y., Hosoya, T., Morita, M., Shimosato, D., Uchida, K., Suzuki, N., Yanagisawa, J., Sogawa, K., Rossant, J., Yamamoto, M., Takahashi, S. & Fujii-Kuriyama, Y. (2008) Krüppel-like factor 5 is essential for blastocyst development and the normal self-renewal of mouse ESCs. Cell Stem Cell 3, 555567.Google Scholar
Fidalgo, M., Shekar, P.C., Ang, Y.S., Fujiwara, Y., Orkin, S.H. & Wang, J. (2011) Zfp281 functions as a transcriptional repressor for pluripotency of mouse embryonic stem cells. Stem Cells 29, 17051716.Google Scholar
Galan-Caridad, J.M., Harel, S., Arenzana, T.L., Hou, Z.E., Doestsch, F.K., Mirny, L.A. & Reizis, B. (2007) Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell 129, 345357.Google Scholar
Goissis, M.D. & Cibelli, J.B. (2014) Functional characterization of SOX2 in bovine preimplantation embryos. Biol. Reprod. 90, 30.Google Scholar
Harel, S., Tu, E.Y., Weisberg, S., Esquilin, M., Chambers, S.M., Liu, B., Carson, C. T., Studer, L., Reizis, B. & Tomishima, M.J. (2012) ZFX controls the self-renewal of human embryonic stem cells. PLoS One 7, e42302.Google Scholar
He, S., Pant, D., Schiffmacher, A., Bischoff, S., Melican, D., Gavin, W. & Keefer, C. (2006) Developmental expression of pluripotency determining factors in caprine embryos: novel pattern of NANOG protein localization in the nucleolus. Mol. Reprod. Dev. 73, 15121522.Google Scholar
Hiller, K., Grote, A., Maneck, M., Münch, R. & Jahn, D. (2006) JVirGel 2.0: computational prediction of proteomes separated via two-dimensional gel electrophoresis under consideration of membrane and secreted proteins. Bioinformatics 22, 2441–3.Google Scholar
Khalfallah, O., Rouleau, M., Barbry, P., Bardoni, B. & Lalli, E. (2009) Dax-1 knockdown in mouse embryonic stem cells induces loss of pluripotency and multilineage differentiation. Stem Cells 27, 1529–37.Google Scholar
Kim, M.S., Sakurai, T., Bai, H., Bai, R., Sato, D., Nagaoka, K., Chang, K.T., Godkin, J.D., Min, K.S. & Imakawa, K. (2013) Presence of transcription factor OCT4 limits interferon-tau expression during the pre-attachment period in sheep. Asian Australasian J. Anim. Sci. 26, 638645.Google Scholar
Kumar, S., Stecher, S. & Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol 33, 1870–4.Google Scholar
Kurum, E., Benayoun, B.A., Malhotra, A., George, J. & Ucar, D. (2016) Computational inference of a genomic pluripotency signature in human and mouse stem cells. Biol. Direct 11, 47.Google Scholar
Lee, D., Redfern, O. & Orengo, C. (2007) Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol. 8, 9951005.Google Scholar
Lujan, E., Zunder, E.R., Ng, Y.H., Goronzy, I. N., Nolan, G.P. & Wernig, M. (2015) Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature 521, 352–6.Google Scholar
Luoh, S.W., Bain, P.A., Polakiewicz, R.D., Goodheart, M.L., Gardner, H., Jaenisch, R. & Page, D.C. (1997) ZFX mutation results in small animal size and reduced germ cell number in male and female mice. Development 124, 2275–84.Google Scholar
Madeja, Z.E., Sosnowski, J., Hryniewicz, K., Warzych, E., Pawlak, P., Rozwadowska, N., Plusa, B. & Lechniak, D. (2013) Changes in sub-cellular localisation of trophoblast and inner cell mass specific transcription factors during bovine preimplantation development. BMC Dev. Biol. 13, 32.Google Scholar
Maekawa, M. & Yamanaka, S. (2011) GLIS1, a unique pro-reprogramming factor, may facilitate clinical applications of iPSC technology. Cell Cycle 10, 3613–4.Google Scholar
Maekawa, M., Yamaguchi, K., Nakamura, T., Shibukawa, R., Kodanaka, I., Ichisaka, T., Kawamura, Y., Mochizuki, H., Goshima, N. & Yamanaka, S. (2011) Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 474, 225–9.Google Scholar
Miles, J.R., McDaneld, T.G., Wiedmann, R.T., Cushman, R.A., Echternkamp, S.E., Vallet, J.L. & Smith, T.P. (2012) MicroRNA expression profile in bovine cumulus–oocyte complexes: possible role of let-7 and miR-106a in the development of bovine oocytes. Anim. Reprod. Sci. 130, 1626.Google Scholar
Moura, M.T., De Sousa, R.V., Leme, L.O. & Rumpf, R. (2008) Analysis of actinomycin D treated cattle oocytes and their use for somatic cell nuclear transfer. Anim. Reprod. Sci 109, 4049.Google Scholar
Moura, M.T. (2012) Pluripotency and cellular reprogramming. Anais da Academia Pernambucana de Ciência Agronômica 8, 138168.Google Scholar
Moura, M.T., Silva, R.L.O., Cantanhêde, L.F., Silva, J.B., Ferreira-Silva, J.C., Silva, P.G., Ramos-Deus, P., Pandolfi, V., Kido, E.A., Benko-Iseppon, A.M. & Oliveira, M.A. (2018) Activity of non-canonical pluripotency-associated transcription factors in goat cumulus–oocyte complexes. Livestock Sci. 212, 5256.Google Scholar
Nagata, S., Toyoda, M., Yamaguchi, S., Hirano, K., Makino, H., Nishino, K., Miyagawa, Y., Okita, H., Kiyokawa, N., Nakagawa, M., Yamanaka, S., Akutsu, H., Umezawa, A. & Tada, T. (2009) Efficient reprogramming of human and mouse primary extra-embryonic cells to pluripotent stem cells. Genes Cells 14, 13951404.Google Scholar
Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, J., Schöler, H. & Smith, A. (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379391.Google Scholar
Parisi, S., Cozzuto, L., Traction, C., Passaro, F., Ciriello, S., Aloia, L., Antonini, D., De Simone, V., Pastore, L. & Russo, T. (2010) Direct targets of KLF5 transcription factor contribute to the maintenance of mouse embryonic stem cell undifferentiated state. BMC Biol. 8, 128.Google Scholar
Peippo, J., Farazmand, A., Kurkilahti, M., Markkula, M., Basrur, P.K. & King, W.A. (2002) Sex-chromosome linked gene expression in in-vitro produced bovine embryos. Mol. Hum. Reprod. 8, 923929.Google Scholar
Poché, R.A., Zhang, M., Rueda, E.M., Tong, X., Mcelwee, M.L., Wong, L., Hsu, C. W., Dejosez, M., Burns, A.R., Fox, D.A., Martin, J.F., Zwaka, T.P. & Dickinson, M.E. (2016) RONIN Is an essential transcriptional regulator of genes required for mitochondrial function in the developing retina. Cell Rep. 14, 1684–97.Google Scholar
Rodríguez-Álvarez, L., Cox, J., Tovar, H., Einspanier, R. & Castro, F.O. (2010) Changes in the expression of pluripotency-associated genes during preimplantation and peri-implantation stages in bovine cloned and in vitro produced embryos. Zygote 18, 269279.Google Scholar
Rombel, I.T., Sykes, K.F., Rayner, S. & Johnston, S.A. (2002) ORF-FINDER: a vector for high-throughput gene identification. Gene 282, 3341.Google Scholar
Rozen, S. & Skaletsky, H. (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365386.Google Scholar
Rossant, J. (2016) Making the mouse blastocyst: past, present, and future. Curr. Topics Dev. Biol. 117, 275288.Google Scholar
Sanna, D., Sanna, A., Mara, L., Pilichi, S., Mastinu, A., Chessa, F., Pani, L. & Dattena, M. (2010) Oct4 expression in in-vitro-produced sheep blastocysts and embryonic-stem-like cells. Cell Biol. Int. 34, 5360.Google Scholar
Silva, P.G.C., Moura, M.T., Cantanhêde, L.F., Ferreira-Silva, J.C., Nascimento, P.S., Silva, R.L.O., Santos Filho, J.P. & Oliveira, M.A.L. (2017) Lessons learned from functional assessment of pluripotency-associated transcription factors during early embryogenesis and embryonic stem cells. Medicina Veterinária (UFRPE) 11, 210221.Google Scholar
Stickels, R., Clark, K., Heider, T.N., Mattiske, D.M., Renfree, M.B. & Pask, A.J. (2015) DAX1/NR0B1 was expressed during mammalian gonadal development and gametogenesis before it was recruited to the eutherian X chromosome. Biol. Reprod. 92, 22.Google Scholar
Takahashi, K., Sakurai, N., Emura, N., Hashizume, T. & Sawai, K. (2015) Effects of downregulating GLIS1 transcript on preimplantation development and gene expression of bovine embryos. J. Reprod. Dev. 61, 369374.Google Scholar
Wang, J., Rao, S., Chu, J., Shen, X., Levasseur, D.N., Theunissen, T.W. & Orkin, S.H. (2006) A protein interaction network for pluripotency of embryonic stem cells. Nature 444, 364368.Google Scholar
Wang, Z.X., The, C.H., Chan, C.M., Chu, C., Rossbach, M., Kunarso, G., Allapitchay, T.B., Wong, K.Y. & Stanton, L.W. (2008) The transcription factor ZFP281 controls embryonic stem cell pluripotency by direct activation and repression of target genes. Stem Cells 26, 2791–9.Google Scholar
Wang, Z., Lin, P. & Yu, S. (2013) Effects of ghrelin on developmental competence and gene expression of in vitro fertilized ovine embryos. Theriogenology 79, 695701.Google Scholar
Wu, J., Yamauchi, T. & Izpisua Belmonte, J.C. (2016) An overview of mammalian pluripotency. Development 143, 1644–8.Google Scholar
Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S. & Madden, T.L. (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134.Google Scholar
Yeo, J.C. & Ng, H.H. (2013) The transcriptional regulation of pluripotency. Cell Res. 23, 2032.Google Scholar
Yu, R.N., Ito, M., Saunders, T.L., Camper, S.A. & Jameson, J.L. (1998) Role of Ahch in gonadal development and gametogenesis. Nat. Genet. 20, 353–7.Google Scholar
Zhang, J., Liu, G., Ruan, Y., Wang, J., Zhao, K., Wan, Y., Liu, B., Zheng, H., Peng, T., Wu, W., He, P., Hu, F.Q. & Jian, R. (2014) DAX1 and NANOG act in parallel to stabilize mouse embryonic stem cells and induced pluripotency. Nat. Commun. 5, 5042.Google Scholar
Supplementary material: PDF

Silva et al. supplementary material

Tables S1-S3 and Figures S1-S2
Download Silva et al. supplementary material(PDF)
PDF 474.7 KB