Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T05:44:47.780Z Has data issue: false hasContentIssue false

Assembly of ovarian follicles in the caecilians Ichthyophis tricolor and Gegeneophis ramaswamii: light and transmission electron microscopic study

Published online by Cambridge University Press:  01 August 2007

R.S. Beyo
Affiliation:
Department of Zoology, University of Kerala, Kariavattom 695 581, Thiruvananthapuram, India.
P. Sreejith
Affiliation:
Department of Zoology, University of Kerala, Kariavattom 695 581, Thiruvananthapuram, India.
L. Divya
Affiliation:
Department of Zoology, University of Kerala, Kariavattom 695 581, Thiruvananthapuram, India.
O.V. Oommen*
Affiliation:
Department of Zoology, University of Kerala, Kariavattom 695 581, Thiruvananthapuram, India.
M.A. Akbarsha
Affiliation:
Department of Animal Science, School of Life Sciences, Bharathidasan University, Thiruchirappalli 620 024, India.
*
All correspondence to: Oommen V. Oommen, Department of Zoology, University of Kerala, Kariavattom 695 581, Thiruvananthapuram, India. Tel: +91 471 2418906. e-mail: oommen@bigfoot.com

Summary

Though much is known about various aspects of reproductive biology of amphibia, there is little information on the cellular and mechanistic basis of assembly of ovarian follicles in this group. This is especially true of the caecilians. Therefore, taking advantage of the abundant distribution of caecilians in the Western Ghats of India, two species of caecilians, Ichthyophis tricolor and Gegeneophis ramaswamii, were subjected to light and transmission electron microscopic analysis to trace the sequential changes during the assembly of ovarian follicles. The paired ovaries of these caecilians are elongated sac-like structures each including numerous vitellogenic follicles. The follicles are connected by a connective tissue stroma. This stroma contains nests of oogonia, primary oocytes and pregranulosa cells as spatially separated nests. During assembly of follicles the oocytes increase in size and enter the meiotic prophase when the number of nucleoli in the nucleus increases. The mitochondrial cloud or Balbiani vitelline body, initially localized at one pole of the nucleus, disperses through out the cytoplasm subsequently. Synaptonemal complexes are prominent in the pachytene stage oocytes. The pregranulosa cells migrate through the connective tissue fibrils of the stroma and arrive at the vicinity of the meiotic prophase oocytes. On contacting the oocyte, the pregranulosa cells become cuboidal in shape, wrap the diplotene stage oocyte as a discontinuous layer and increase the content of cytoplasmic organelles and inclusions. The oocytes increase in size and are arrested in diplotene when the granulosa cells become flat and form a continuous layer. Soon a perivitelline space appears between the oolemma and granulosa cells, completing the process of assembly of follicles. Thus, the events in the establishment of follicles in the caecilian ovary are described.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Mukhtar, K.A.K. & Webb, A.C. (1971). An ultrastructural study of primordial germ cells, oogonia and early oocytes in Xenopus laevis. J. Embryol. Exp. Morphol. 26, 195–21.Google ScholarPubMed
Andreuccetti, P. (1992). An ultra-structural study of differentiation of pyriform cells and their contribution to oocyte growth in representative squamata. J. Morphol. 212, 111.CrossRefGoogle Scholar
Andreuccetti, P., Taddei, C. & Filosa, S. (1978). Intercellular bridges between follicle cells and oocyte during the differentiation of follicular epithelium in Lacerta sicula Raf. J. Cell.Sci. 33, 341–50.CrossRefGoogle ScholarPubMed
Anjubault, E. & Exbrayat, J.M. (2004). Contribution à la connaissance de l'appareil génital de Typhlonectes compressicauda (Duméril et Bibron, 1841), Amphibien Gymnophione. I. Gonadogenèse. Bull. Mens. Soc. Linn. Lyon. 73, 379–92.Google Scholar
Balinsky, B.L. & Devis, B.J. (1963). Origin and differentiation of cytoplasmic structures in the oocytes of Xenopus laevis. Acta. Embryol. Morphol. Exp. 6, 55108.Google Scholar
Begovac, P.C. & Wallace, R.A. (1988). Stages of oocyte development in the pipe fish, Syngnathus scovelli. J. Morphol. 197, 353–69.CrossRefGoogle Scholar
Berois, N. & de Sa, R. (1988). Histology of the ovaries and fat bodies of Chthonerpeton indistinctum, J. Herpetol. 22, 146–51.CrossRefGoogle Scholar
Browne, C.L., Wiley, H.S. & Dumont, J.N. (1979). Oocyte follicle cell gap junctions in Xenopus laevis and the effects of gonadotropin on their permeability, Science 203, 182–3.CrossRefGoogle ScholarPubMed
Brummett, A.R. & Dumont, J.N. (1976). Oogenesis in Xenopus laevis (Daudin) III. Localization of negative charges on the surface of developing oocytes, J. Ultrastruct. Res. 55, 416.CrossRefGoogle ScholarPubMed
Brummett, A.R. & Dumont, J.N. (1977). Intracellular transport of vitellogenin in Xenopus laevis oocytes: an autoradiographic study, Dev. Biol. 60, 482–6.CrossRefGoogle Scholar
Cabada, M.O., Sanchez Riera, A.N., Genta, H.D., Sanchez, S.S. & Barisone, G.A. (1996).Vitelline envelope formation during oogenesis in Bufo arenarum, Biocell 20, 7786.Google ScholarPubMed
Calderon, M.L, De Perez, G.R. & Ramirez-Pinilla, M.P. (2004). Morphology of the ovary of Caiman crocodilus (Crocodylia: Alligatoridae), Ann. Anat. 186, 1324.CrossRefGoogle ScholarPubMed
Callebault, M. (1991). Pyriform-like and holding granulosa cells in the avian ovarian follicular wall, Eur. Arch. Biol. (Bruxelles) 102, 135–45.Google Scholar
Coggins, L.W. (1973). An ultrastructural and radioautographic study of early oogenesis in the toad Xenopus laevis, J. Cell. Sci. 12, 7193.CrossRefGoogle ScholarPubMed
De-Oliveira, C. & Santos, L.R.D.S. (2004). Histological characterization of cellular types during Scina fuscovarius oogenesis (Lutz)(Anura, Hylidae), Rev. Brazil. de Zool. 21, 919–23.CrossRefGoogle Scholar
Dumont, J.N. (1972). Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals, J. Morphol. 136, 153–79.CrossRefGoogle ScholarPubMed
Dumont, J.N. (1978). Oogenesis in Xenopus laevis (Daudin). VI. The route of injected tracer transport in the follicle and developing oocyte, J. Exp. Zool. 204, 193217.CrossRefGoogle ScholarPubMed
Dumont, J.N. & Brummet, A.R. (1978). Oogenesis in Xenopus laevis (Daudin). V. Relationships between developing oocytes and their developing follicular tissues, J. Morphol. 155, 7398.CrossRefGoogle ScholarPubMed
Exbrayat, J.M. (1986). Quelques observations sur la reproduction en élevage de Typhlonectes compressicaudus, amphibien apode vivipare. Possibilité de rythmes endogènes, Bull. Soc. Herp. Fr. 40, 5262.Google Scholar
Exbrayat, J.M. (2006). Oogenesis and folliculogenesis. In: Reproductive Biology and Phylogeny of Gymnophiona, Vol. 3, (ed. Jamieson, B.G.M. & Exbrayat, J.M.), pp. 275290.Enfield, New Hampshire: Science Publishers Inc.Google Scholar
Exbrayat, J.M. & Collenot, G. (1983). Quelques aspects de I'évolution de I’ ovaire de Typhlonectes compressicaudus (Duméril & Bibron, 1841), Batracien Apode vivipare. Etude quantitative et histochimique des corps jaunes, Reprod. Nutr. Dev. 23, 889–98.CrossRefGoogle Scholar
Exbrayat, J.M. & Laurent, M.T. (1983). Premières observations sur le cycle annuel de l’ ovxaire de Typhlonectes compressicaudus (Dumèril & Bibron, 1841), Batracien Apode Vivipare, CR. Acad. Sci 296, 493–8.Google Scholar
Filosa, S., Taddei, C. & Andreuccetti, P. (1979). The differentiation and proliferation of follicle cells during oocyte growth in Lacerta sicula, J. Embryol. Exp. Morphol. 54, 515.Google ScholarPubMed
Gilula, N.B., Epstein, M.L. & Beers, W.H. (1978). Cell-to-cell communication and ovulation: a study of the cumulus–oocyte complex, J. Cell Biol. 78, 5875.CrossRefGoogle ScholarPubMed
Gόmez, D. & Ramírez-Pinilla, M.P. (2004). Ovarian histology of the placentotrophic Mabuya mabouya (Squamata, Scincidae), J. Morphol. 259, 90105.CrossRefGoogle Scholar
Grier, H. (2000). Ovarian germinal epithelium and folliculogenesis in the common snook, Centropomus undecimalis (Teleostei: Centropomidae), J. Morphol. 243, 265–81.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Guraya, S.S. (1979). Recent advances in the morphology, cytochemistry and function of Balbiani vitelline body in animal oocytes, Int. Rev. Cytol. 59, 249321.CrossRefGoogle ScholarPubMed
Hamlett, W.C., Jezior, M. & Spieler, R. (1999). Ultrastructural analysis of folliculogenesis in the ovary of the yellow spotted stingray, Urolophus jamaicensis, Ann. Anat. 181, 159–72.CrossRefGoogle ScholarPubMed
Heasman, J., Quarmby, J. & Wylie, C.C. (1984). The mitochondrial cloud of Xenopus oocytes: the source of germinal material, Dev. Biol. 105, 458–69.CrossRefGoogle Scholar
Hernandez-Franyutti, A., Uribe-Aranzabal, M.C. & Guillette, L.J. Jr (2005). Oogenesis in the viviparous matrotrophic lizard Mabuya brachypoda, J. Morphol. 265, 152–64.CrossRefGoogle ScholarPubMed
Holland, C.A. & Dumont, J.N. (1975). Oogenesis in Xenopus laevis (Daudin). IV. Effects of gonadotropin, estrogen and starvation on endocytosis in developing oocytes, Cell Tissue Res. 162, 177–84.Google ScholarPubMed
Ibrahim, M.M. & Wilson, I.B. (1989). Light and electron microscopic studies on ovarian follicles in the lizard Chalcides ocelletus, J. Zool. 218, 187208.CrossRefGoogle Scholar
Kanamadai, R.D. & Saidapur, S.K. (1982). Pattern of ovarian activity in the Indian toad Bufo melanostictus (Schn), Proc. Natl. Sci. Acad. Indian B 48, 307–16.Google Scholar
Klosterman, L.L (1987). Ultrastructural and quantitative dynamics of the granulosa of the ovarian follicles of the lizard Gerrhonotus coeruleus (Family: Anguidae), J. Morphol. 192, 125–44.CrossRefGoogle ScholarPubMed
Kovacs, J., Forgo, V. & Peczely, P. (1992). The fine structure of the follicular cells in growing and atretic ovarian follicles of the domestic goose, Cell Tissue Res. 267, 561–9.Google ScholarPubMed
Lofts, B. (1974). Reproduction. In: The Physiology of the Amphibia, Vol. II, (ed. B. Lofts), pp. 53106. New York: London Academic Press.Google Scholar
Mahmoud, I.Y., Ba-Omar, T. & Alkindi, A. (2006). Partial development of the steroidogenic ultra structural features in degenerative corpora lutea after a single injection of pituitary extract in the Western painted turtle (Chrysemys picta), Tissue Cell 38, 171–6.CrossRefGoogle Scholar
Marina, P., Loredana, R. & Piero, A. (2002). Ultrastructural studies on developing follicles of the spotted ray Torpedo marmorata, Mol. Reprod. Dev. 61, 7886.Google Scholar
Marina, P., Salvatore, V., Maurizio, R., Loredana, R., Annamaria, L., Vincenza, L., Ermelinda, L. & Piero, A. (2004). Ovarian follicle cells in Torpedo marmorata synthesize vitellogenin, Mol. Reprod. Dev. 67, 424–9.CrossRefGoogle ScholarPubMed
Masood-Parveez, U. & Nadkarni, V.B. (1993a). The ovarian cycle in an oviparous gymnophione amphibian, Ichthyophis beddomei (Peters), J. Herpetol. 27, 5963.CrossRefGoogle Scholar
Masood-Parveez, U. & Nadkarni, V.B. (1993b). Morphological, histological and histochemical studies of the ovary of an oviparous caecilian, Ichthyophis beddomei (Peters), J. Herpetol. 27, 63–9.CrossRefGoogle Scholar
Maurizii, M.G., Alibardi, L. & Taddei, C. (2000). Organization and characterization of the keratin cytoskeleton in the previtellogenic ovarian follicle of the lizard Podarcis sicula raf, Mol. Reprod. Dev. 57, 159–66.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Oommen, O.V., Measey, G.J., Gower, D.J., Wilkinson, M. (2000). Distribution and abundance of the caecilian Gegeneophis ramaswamii (Amphibia: Gymnophiona) in southern Kerala, Curr. Sci. 79, 1386–9.Google Scholar
Pancharatna, M. & Saidapur, S.K. (1985a). Ovarian cycle in the frog Rana cyanophlyctis: a quantitative study of follicular kinetics in relation to body mass, oviduct and fat body cycles, J. Morphol. 186, 135–47.CrossRefGoogle ScholarPubMed
Pancharatna, M. & Saidapur, S.K. (1985b). Seasonal variation in oocyte recruitment and development in the long-term hypophysectomized frog, Rana cyanophlyctis, in relation to homoplastic pituitary pars distalis homogenate and exogenous hormones, Indian J. Exp. Biol. 23, 183–7.Google Scholar
Patino, R., Yoshizaki, G., Thomas, P. & Kagawa, H. (2001). Gonadotrophic control of ovarian follicular maturation: the two-step concept and its mechanisms, Comp. Biochem. Physiol. 129, 427–39.CrossRefGoogle Scholar
Polzonetti-Magni, A.M. (1998). Amphibian ovarian cycles. In: Encyclopedia of Reproduction, Vol. 1 (ed. Knobil, E. & Nill, J.D.), San Diego: Academic Press. pp. 154–60.Google Scholar
Pramoda, S. & Saidapur, S.K. (1984). Annual changes in the somatic weight, hypophysial gonadotrophs, ovary, oviduct and abdominal fat bodies in the Indian bullfrog Rana tigerina, Proc. Natl. Sci. Acad. Indian B50, 387–98.Google Scholar
Rastogi, R.K., Izzo-Vitiello, I., DiMeglio, M., Di Matte, L., Franzese, R., Dicostanzo, M.G., Minncci, S, Iela, L. & Chieffi, G. (1983). Ovarian activity and reproduction in the frog Rana esculenta, J. Zool. Lond. 200, 223–47.CrossRefGoogle Scholar
Redshaw, M.R. (1972).The hormonal control of amphibian ovary, Am. Zool. 12, 289306.CrossRefGoogle Scholar
Ricchiari, L., Carmela, V.M., Marina, P., Rosa, C., Annamaria, L. & Piero, A. (2004). Alpha and beta spectrin distribution during the differentiation of pyriform cells in follicles of lizard Podarcis sicula, Mol. Reprod. Dev. 67, 101–7.CrossRefGoogle ScholarPubMed
Saidapur, S.K. (1989). Reproductive cycles of amphibians. In: The Reproductive Cycles of Indian Vertebrates. ed. Saidapur, S.K., New Delhi: Allied Publishers. pp. 166224.Google Scholar
Sanchez, S. & Villecco, E.I. (2003). Oogenesis. In: Reproductive Biology and Phylogeny of Anura, Vol. 2, ed. Jamieson, B.G.M., Enfield, New Hampshire: Science Publishers Inc. pp. 2771.Google Scholar
Sarkar, H.B.D. & Shivanandappa, T. (1989). Reproductive cycles of reptiles. In: Reproductive Cycles of Indian Vertebrates. ed. Saidapur, S.K., pp. 225–72. New Delhi: Allied Publishers.Google Scholar
Sarkar, S., Sarkar, N.K., Das, P. & Maiti, B.R. (1996). Photothermal effects on ovarian growth and function in the soft-shelled turtle Lissemys punctata punctata, J. Exp. Zool. 274, 4155.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Shanbhag, A. & Krishna Prasad, B.S. (1993). Follicular dynamics and germinal bed activity during the annual ovarian cycle in the lizard, Calotes versicolor, J. Morphol. 216, 17.CrossRefGoogle ScholarPubMed
Sharon, R., Degani, G. & Warburg, M.R. (1997). Oogenesis and the ovarian cycle in Salamandra salamandra infraimmaculata Mertens (Amphibia; Urodela; Salamandridae) in fringe areas of the taxon's distribution, J. Morphol. 231, 149–60.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Skinner, M.K. (2005). Regulation of primordial follicle assembly and development, Human Reprod. Update 11, 461–71.CrossRefGoogle ScholarPubMed
Sretarugsa, P., Weerachatyanukul, W., Chavadej, J., Kruatrachue, M. & Sobhon, P. (2001). Classification of developing oocytes, ovarian development and seasonal variation in Rana tigerina, Science Asia 27, 114.CrossRefGoogle Scholar
Taddei, C. (1972). Significance of pyriform cells in ovarian follicles of Lacerta sicula, Exp. Cell Res. 72, 562–6.CrossRefGoogle ScholarPubMed
Taddei, C. & Andreuccetti, P. (1990). Structural modifications of the nuclear components during lizard oogenesis in relation to the differentiation of the follicular epithelium, Cell Differ. Dev. 29, 205–15.CrossRefGoogle Scholar
Tokarz, R.R. (1978). Oogonial proliferation, oogenesis and folliculogenesis in non-mammalian vertebrates. In: The Vertebrate Ovary. ed. Jones, R.R., pp. 145–79. New York: Plenum Press.Google Scholar
Uribe, M.C.A. (2001). Reproductive systems of caudate amphibians. In: Vertebrate Functional Morphology (ed. Dutta, H.M. & Munshi, J.S. Datta), pp. 267–94. Enfield, New Hampshire: Science Publishers Inc.Google Scholar
Uribe, M.C.A. (2003). Reproductive biology and phylogeny of Urodela. In: Ovary and Oogenesis (ed. Jamieson, B.G.M. & Sever, D.M.), pp. 135–50. Enfield, New Hampshire: Science Publishers Inc.Google Scholar
Uribe, M.C.A. & Guillette, L.J. Jr. (2000). Oogenesis and ovarian histology of the American alligator Alligator mississippiensis, J. Morphol. 245, 225–40.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Van Voorhis, B.J. (1999). Follicular development. In: Encyclopedia of Reproduction, Vol. 2, (ed. Knobil, E. & Nill, J.D.), pp. 376389. San Diego: Academic Press.Google Scholar
Villecco, E.I., Aybar, M.J., Sánchez, S.S. & Sánchez Riera, A.N. (1996). Heterologous gap junctions between oocyte and follicle cells in Bufo arenarum: hormonal effects on their permeability and potential role in meiotic arrest, J. Exp. Zool. 276, 7685.3.0.CO;2-2>CrossRefGoogle Scholar
Villecco, E.I., Aybar, M.J., Genta, S.B., Sánchez, S.S. & Sánchez Riera, A.N. (2000). Effect of gap junction uncoupling in full Bufo arenarum ovarian follicles: participation of cAMP in meiotic arrest, Zygote 8, 171–9.CrossRefGoogle ScholarPubMed
Villecco, E.I., Genta, S.B., Sánchez Riera, A.N. & Sánchez, S.S. (2002). Ultrastructural characteristics of the follicle cell–oocyte interface in the oogenesis of Ceratophrys cranwelli, Zygote 10, 163–73.CrossRefGoogle ScholarPubMed
Wake, M.H. (1968). Evolutionary morphology of the caecilian urogenital system. Part I: The gonads and fat bodies, J. Morphol. 126, 291332.CrossRefGoogle Scholar
Wake, M.H. (1970a). Evolutionary morphology of the caecilian urogenital system. Part II: The kidneys and urogenital ducts, Acta. Anat. 75, 321–58.CrossRefGoogle Scholar
Wake, M.H. (1970b). Evolutionary morphology of the caecilian urogenital system. Part III: The bladder, Herpetologica 26, 120–8.Google Scholar
Wake, M.H. (1972). Evolutionary morphology of the caecilian urogenital system. Part IV: The cloaca, J. Morphol. 136, 353–66.CrossRefGoogle Scholar
Wake, M.H. (1977). The reproductive biology of caecilians. In: The Reproductive Biology of Amphibians: An Evolutionary Perspective (ed. Taylor, D.H. & Guttman, S.I), pp. 73101. New York: Plenum Press.CrossRefGoogle Scholar
Wake, M.H. (1980). Reproduction, growth and population structure of the Central American caecilian Dermophis mexicanus, J. Herpetol. 36, 244–56.Google Scholar
Wallace, R.A. (1985). Vitellogenesis and oocyte growth in non-mammalian vertebrates. In: Developmental Biology, Vol. I, ed. Browder, L.W., pp. 127–77. New York: Plenum Press.Google Scholar
Wallace, R.A. & Bergink, E.W. (1974). Amphibian vitellogenin: properties, hormonal regulation of hepatic synthesis and ovarian uptake and conversion to yolk proteins, Am. Zool. 14, 1159–75.CrossRefGoogle Scholar
Wallace, R.A. & Dumont, J.N. (1968). The induced synthesis and transport of yolk protein and their accumulation by the oocyte in Xenopus laevis, J. Cell Comp. Physiol. 72, 7389.CrossRefGoogle ScholarPubMed
Wallace, R.A. & Jared, D.W. (1976). Protein incorporation by isolated amphibian oocytes. V. Specificity for vitellogenin incorporation, J. Cell Biol. 69, 345–51.CrossRefGoogle ScholarPubMed
Wallace, R.A. & Selman, K. (1990). Ultra structural aspects of oogenesis and oocyte growth in fish and amphibians, J. Electron Microscopy Techniques 16, 175201.CrossRefGoogle Scholar
Wilk, K., Balinski, S., Dougherty, M.T. & Kloc, M. (2005). Delivery of germinal granules and localized RNAs via the messenger transport organizer pathway to the vegetal cortex of Xenopus oocytes occurs through directional expansion of the mitochondrial cloud, Int. J. Dev. Bol. 49, 1721.CrossRefGoogle Scholar
Wischnitzer, S. (1966). The ultrastructure of the cytoplasm of the developing amphibian egg, Adv. Morphog. 5, 131–79.CrossRefGoogle ScholarPubMed
Zarnescu, O. (2004). Ultrastructural observations of previtellogenic ovarian follicles of dove, Zygote 12, 285–92.CrossRefGoogle ScholarPubMed