Article contents
Combined use of proacrosion immunocytochemistry and autosomal DNA in situ hybridisation for evaluvation of human ejaculated germ cells
Published online by Cambridge University Press: 26 September 2008
Summary
The recently reported human pregnancies and births after fertilising oocytes with round spermatids recovered from the ejaculate of men with non-obstructive azoospermia have underscored the need for a more accurate evaluation of the nuclear and cytoplasmic maturation status of ejaculated germ cells. In this study we describe our first experience with a method combining the immunocytochemical visualisation of proacrosin with autosomal DNA fluorescence in situ hybridisation (FISH) to assess ejaculated germ cells from patients with a spermiogenesis defect. The proacrosin immunoreactivity, analysed with the use of the monoclonal antibody 4D4, has been detected in cells of round spermatid size presenting a haploid FISH figure as well as in larger cells whose ploidy corresponds to primary and secondary spermatocytes. These observations are in agreement with previously published results obtained, with the use of the same antibody, by immunocytochemical analysis of histological sections of testicular tissue. All the cells of round spermatid size possessing proacrosin immunoreactivity were found to be haploid by FISH. On the other hand, some of the haploid cells of round spermatid size did not possess proacrosin immunoreactivity. The structural pattern of proacrosin immunoreactivity was highly variable both in spermatids and in younger spermatogenic cells. These data show that cell size is the main criterion to be used for the identification of ejaculated round spermatids, whereas the presence of the developing acrosome represents only an auxiliary criterion. The scoring of acrosomal development in ejaculated spermatids may be useful as part of pre-treatment diagnosis before the inclusion of infertile couples in a spermatid conception programme.
- Type
- Article
- Information
- Copyright
- Copyright © Cambridge University Press 1996
References
- 9
- Cited by