Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T09:27:03.720Z Has data issue: false hasContentIssue false

Cooling of pirapitinga (Piaractus brachypomus) embryos stored at −10ºC

Published online by Cambridge University Press:  26 March 2014

Nathalie Ommundsen Pessoa*
Affiliation:
Dept of Biology, State University of Ceará, UECE, Fortaleza, CE, 60740-000, Brazil.
José Agenor Soares Galvão
Affiliation:
Dept of Biology, State University of Ceará, UECE, Fortaleza, CE, 60740-000, Brazil.
Francisco Gerson Mendes de Souza Filho
Affiliation:
Dept of Statistics and Applied Mathematics, DEMA, Federal University of Ceará, UFC, Fortaleza, CE, 60.455–760, Brazil.
Míriam Luiza Nogueira Martins de Sousa
Affiliation:
Dept of Biology, State University of Ceará, UECE, Fortaleza, CE, 60740-000, Brazil.
Célia Maria Souza Sampaio
Affiliation:
Dept of Biology, State University of Ceará, UECE, Fortaleza, CE, 60740-000, Brazil.
*
All correspondence to: Nathalie Ommundsen Pessoa. Dept of Biology, State University of Ceará, UECE, Fortaleza, CE, 60740-000, Brazil. Tel:/Fax: +85 3101 9927. e-mail: nathalieop@gmail.com

Summary

Cryopreservation has not been used successfully to preserve fish embryos, although chilling techniques have been used with good results. The aim of this study was to chill Piaractus brachypomus embryos at – 10°C for various storage times. Embryos at the following ontogenetic stages were used: blastoderm – 1.2 hours post-fertilization (hpf); epiboly – 5 hpf; blastopore closure – 8 hpf; and appearance of the optic vesicle – 13 hpf. One hundred embryos were selected from each ontogenetic stage and chilled at – 10°C for 6 or 10 h. The results were analysed using analysis of variance (ANOVA) and Tukey's test at a 5% significance level. A significantly greater number of completely developed live larvae were observed following embryonic treatment with a cryoprotectant solution that contained 17.5% sucrose and 10% methanol. There was no survival for embryos cooled at – 10°C in initial developmental stages (1, 2 and 5 h hpf). Furthermore, higher survival rates were observed when embryos were treated at more advanced developmental stages (8 and 13 hpf). Therefore, P. brachypomus embryos at the blastopore-closure (8 hpf) or appearance-of-optic-vesicle (13 hpf) stages should be used for embryo chilling protocols and chilling should be performed using a 17.5% sucrose with a 10% methanol solution at – 10°C for up to 6 h. The best results were obtained with 13-hpf and 8-hpf embryos and cooling at 6 h of storage.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahammad, M.M., Bhattacharyya, D. & Jana, B.B. (2002). The hatching of common carp (Cyprinus carpio L.) embryos in response to exposure to different concentrations of cryoprotectant at low temperatures. Cryobiology 44, 114–21Google Scholar
Ahammad, M.M., Bhattacharyya, D. & Jana, B.B. (2003). Stage-dependent hatching responses of rohu (Labeo rohita) embryos to different concentrations of cryoprotectants and temperatures. Cryobiology 46, 116.Google Scholar
Bart, A. (2000). New approaches in cryopreservation of fish embryos. In Cryopreservation in Aquatic Species (eds Tiersch, T.R. & Mazik, P.M.), pp. 179–87. Baton Rouge: World Aquaculture Society.Google Scholar
Begovac, P.C. & Wallace, R.C. (1989). Major vitelline envelope proteins in piperfish oocytes originate within the follicle and are associated with the Z3 layer. J. Exp. Zool. 251, 5673.CrossRefGoogle Scholar
Beirao, J., Robles, V., Herraez, M.P., Sarasquete, C., Dinis, M.T. & Cabrita, E. (2006). Cryoprotectant microinjection toxicity and chilling sensitivity in gilthead seabream (Sparus aurata) embryos. Aquaculture 261, 897903.Google Scholar
Cabrita, E., Robles, V., Chereguini, O., Wallace, J.C. & Herráez, M.P. (2003). Effect of different cryoprotectants and vitrificant solutions on the hatching rate of turbot embryos (Scophthalmus maximus). Cryobiology 47, 204–13.CrossRefGoogle ScholarPubMed
Cabrita, E., Robles, V., Wallace, J.C., Sarasquete, M.C. & Herráez, M.P. (2006). Preliminary studies on the cryopreservation of gilthead seabream (Sparus aurata) embryos. Aquaculture 251, 245–55.Google Scholar
Chen, S.L. & Tian, Y.S. (2005). Cryopreservation of flounder (Paralichthys olivaceus) embryos by vitrification. Theriogenology 63, 1207–19.Google Scholar
Cloud, J.G., Armstrong, R., Wheeler, P., Kucera, P.A. & Thorgaard, G.H. (2000). The northwest salmonid germplasm repository. In Cryopreservation in Aquatic Species (eds Tiersch, T.R. & Mazik, P.M.), pp. 338–42. Baton Rouge, Louisiana, USA: World Aquaculture Society.Google Scholar
Costa, R.S., Velardi, J.M.C., Senhorini, J.A., Veríssimo-Silveira, R. & Silveira, A.N. (2012). Resfriamento de embriões de peixes neotropicais [Chilling of neotropical fish embryos]. Proceedings of Aquaciência, Palmas, Brazil.Google Scholar
Ding, F.H., Xiao, Z.Z. & Li, J. (2007). Preliminary studies on the vitrification of red sea bream (Pagrus major) embryos. Theriogenology 68, 702–8.Google Scholar
Dinnyés, A., Urbányi, B., Baranyai, B. & Magyary, I. (1998). Chilling sensitivity of carp (Cyprinus carpio) embryos at different developmental stages in the presence or absence of cryoprotectants: work in progress. Theriogenology 50, 113.Google Scholar
Haga, Y. (1982). On the subzero temperature preservation of fertilized eggs of rainbow trout. Bull. Jap. Soc. Sci. Fish 48, 1569–72.Google Scholar
Fornari, D.C., Ribeiro, R.P., Streit, D.P., Vargas, L., Barrero, N.M.L. & Moraes, G.V. (2011). Freezing injuries in the embryos of Piaractus mesopotamicus . Zygote 19, 345–50.Google Scholar
Hagedorn, M., Kleinhans, F.W., Freitas, R., Liu, J., Hsu, E.W., Wildt, D.E. & Rall, W.F. (1997). Water distribution and permeability of zebrafish embryos, Brachydanio rerio . J. Exp. Zool. 278, 356–71.Google Scholar
Harvey, B. & Ashwood-Smith, M.J. (1982). Cryoprotectant penetration and supercooling in the eggs of Salmonid fish. Cryobiology 19, 2940.Google Scholar
Jaoul, A. & Roubaud, P. (1982). Resistance de l’oeuf de carp commune (Cyprinus carpio L. Cyprinidae) a des chocs thermiques chauds ou froids. Can. J. Zool. 60, 3409–19.Google Scholar
Lahnsteiner, F. (2008). The effect of internal and external cryoprotectants on zebrafish (Danio rerio) embryos. Theriogenology 69, 384–96.Google Scholar
Liu, K., Chou, T. & Lin, H. (1993). Cryosurvival of goldfish embryos after subzero freezing. Aquat. Living Res. 6, 145–53.CrossRefGoogle Scholar
Lopes, T.S., Romagosa, E., Streit, D.P. Jr, Ribeiro, R.P. & Digmayer, M. (2011). Cooling of pacu (Piaractus mesopotamicus) embryos at various stages of development for 6 or 10 hours. Theriogenology 75, 570–6.CrossRefGoogle ScholarPubMed
Lopes, T.S., Streit, D.P. Jr, Fornari, D.C., de Oliveira, D., Ribeiro, R.P. & Romagosa, E. (2013). Chilling curves for Piaractus mesopotamicus (Holmberg, 1887) embryos stored at –8°C. Zygote 21, 345–50.Google Scholar
Luczynski, M. (1984). A technique for delaying embryogenesis of vendace (Coregonus albula L.) eggs in order to synchronize mass hatching with optimal conditions for lake stocking. Aquaculture 41, 113–7.Google Scholar
Maddock, B.G. (1974). A technique to prolong the incubation period of brown trout ova. Progressive Fish-Culturist 36, 219–22.Google Scholar
Nascimento, A.F., Maria, A.N., Pessoa, N.O., Carvalho, M.A.M. & Viveiros, A.T. (2010) Out-of-season sperm cryopreserved in different media of the Amazonian freshwater fish pirapitinga (Piaractus brachypomus). Anim. Reprod. Sci. 118, 324–9.Google Scholar
Ninhaus-Silveira, A., Costa, R.S., Velarde, J.M.C., Senhorini, J.A. & Veríssimo-Silveira, R. (2012). Toxicidade de crioprotetores aos embriões de Prochilodus lineatus [Cryoprotectant toxicity in Prochilodus lineatus embryos]. Proceedings of Aquaciência, Palmas, Brazil.Google Scholar
Robertson, S.M., Lawrence, A.L., Neill, W.H., Arnold, C.R. & McCarthy, G. (1988). Toxicity of the cryoprotectants glycerol, dimethyl sulfoxide, ethylene glycol, methanol, sucrose, and sea salt solutions to the embryos of red drum. Progressive Fish-Culturist 50, 148–54.Google Scholar
Robles, V., Cabrita, E., Real, M., Álvarez, R & Herráez, M.P. (2003). Vitrification of turbot embryos: preliminary assays. Cryobiology 47, 30–9.CrossRefGoogle ScholarPubMed
Roubaud, P., Chaillou, C. & Sjafei, D. (1985). Variations cycliques de la tolerance a un thermique froid appliqué au cours de la segmentation de l’embryon de la carpe commune (Cyprinus carpio L.). Can. J. Zool. 63, 657–63.Google Scholar
Streit, D.P. Jr, Digmayer, M., Ribeiro, R.P., Sirol, R.N., Moraes, G.V. & Galo, J.M. (2007). Embriões de pacu submetidos a diferentes protocolos de resfriamento [Pacu embryos submitted to different cooling protocols]. Pesquisa Agropecuária Brasileira 42, 1199–202.CrossRefGoogle Scholar
Val, A.L. & Val-Almeida, V.M.F. (1995). Fishes of the Amazon and their Environment: Physiological and Biochemical Aspects. Heidelberg: Springer.CrossRefGoogle Scholar
Zhang, T., Liu, X.Z. & Rawson, D.M. (2003). Effects of methanol and developmental arrest on chilling injury in zebrafish (Danio rerio) embryo. Theriogenology 59, 1545–56.Google Scholar
Zhang, T. & Rawson, D.M. (1995). Studies on chilling sensitivity of zebrafish (Brachydanio rerio) embryos. Cryobiology 32, 239–46.Google Scholar
Zhang, T., Rawson, D.M. & Morris, G.J. (1993). Cryopreservation of pre-hatch embryos of zebrafish (Brachydanio rerio) embryos. Aquat. Living Res. 6, 145–53.Google Scholar